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The failure probability and the reliability index have been determined for a pipe submitted to
internal pressure, exhibiting a corrosion defect, embedded in a soil with a ground reaction, and
underwent the displacement due to seismic activity. Results are obtained by computing the
condition of failure: strain demand higher than strain resistance which is typically the Strain
Based Design (SBD) basis. From the probabilistic point of view, this condition results in the
overlay of the two probability distributions, namely, demand and resistance. An analytical
method is proposed to compute the common area between the strain demand and resistance
distribution and then to get the probability of failure. The strain demand is assumed to follow a
power-law distribution and the strain resistance is a Normal one. The strain demand is com-
puted assuming that the probability density of seismic waves follows a Gutenberg — Richter
distribution law. This simple method is also used to predict the failure probability of different
reference periods or seismic zone. It is also used to examine the influence of the coefficient of
variation of the strain resistance distribution when using vintage pipe steels.

Keywords: pipe; defects; seismic displacement; internal pressure; probability of failure; strain
based design; safety factor.

ratio of the ultimate strain and the strain demand
as illustrated in Fig. 1.

For a probabilistic approach, either SyBD or
SBD, the safety factor is defined from the statis-
tical distribution of the resistance and the demand
more precisely as the ratio of the mean value of the
resistance pp and the mean value of the demand

Introduction

The failure risk assessment can be done in two
ways, one determinist and the second probabilistic.
In a deterministic approach, one compares the
safety factor to a prescribed value. For a probabilis-
tic one, the failure probability is compared to a con-
ventional value. The safety factor is defined as the i
ratio of the resistance and the demand. Ba:

A more precise definition depends based on the
stress-based design (SyBD) or strain-based design
(SBD) [1, 2].

fs = Wr/hg. (1

For a stress-based design, the safety factor is
defined as the ratio of the yield stress o, and the
stress demand oy. For SBD, the safety factor is the

| SyBD | [ SBD |
Stress i Stress -
N
fs = auleq
Stramn & &1 Strain

Fig. 1. Schema of the principle of stress-based design
(SyBD) and strain-based design (SDB): yield stress o,, stress
demand o, strain demand ¢,, and ultimate strength ¢,

The prescribed value of the safety factor is gen-
erally f. = 2 for SyBD. The earliest information
about the use of this value is given in the code of
Hammurabi (Codex Hammurabi). The best pre-
served ancient law code was created in 1760 bc in
ancient Babylon. It was enacted by the sixth Baby-
lonian king, Hammurabi. The text covers the bot-
tom portion of a basalt stele with the laws written
in cuneiform script. It contains a list of crimes and
their various punishments, as well as settlements
for common disputes and guidelines for citizen con-
duct. It is mentioned that an architect, who built a
house that collapsed on its occupants and caused
their deaths, is condemned to capital punishment.
In addition, it is noted that “when a stone is neces-
sary to build a palace, the architect has to plan to
use two stones.” This was the first information
about the value of 2 for the safety factor.
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Fig. 2. Definition of the probability of failure

In codes that specifically allow strain-based de-
sign (DNV 2000, DNV-OS-F101 [3] ASME B31 [4],
CSA 7662 [5] AND API 1104 [6]), the safety factor
is a deterministic one f, 4, and generally estab-
lished by expert judgments. Table 1 gives the deter-
ministic safety factors according to the safety
classes for tension.

For failure risk, the admissible probability Py,
has to be less than a conventional value which de-
pends on the types of risk and equipment. If there
is no human risk P, = 10, with human risk
Pryg = 10 and for nuclear components Prog =
= 1075, This conventional value is a compromise
between the cost and the risk [7]. For pipes, the
traditional value is Py, = 107

The resistance (R) and the demand (d) func-
tions involve random variable (s) with different
density probability distribution functions (PDF).
One assumes that the resistance (R) and the de-
mand (d) are independent variables with respective
PDF p; and pg. The failure probability is repre-
sented by the overlay of these PDFs as indicated in
Fig. 2 [8].

A reliability index is an attempt to quantita-
tively assess the reliability of a system using a sin-
gle numerical value. The set of reliability indices
varies depending on the field of engineering, and
multiple different indices may be used to charac-
terize a single system. The loss of load probability
(LOLP) reflects the probability of the demand
exceeding the capacity in a given interval of time
(for example, a year) before any emergency mea-
sures are taken. It is defined as a percentage of
time during which the load on the system exceeds
its capacity.

If X is the performance of interest and if X is a
Normal random variable, the failure probability is
computed by P, = ®(-y), y is the reliability index.
When X is a nonlinear function of n normal ran-
dom variables (X, ..., X)), then the preceding for-
mula can be generalized, with some approximation.
One uses a nice property of the reliability index,

Probabality of failure

Hazrardows

| Unsatisfactory

Poor

Below average

Above average

High
4

Rehability index ¥

Fig. 3. USACE (1997) guidelines for reliability index and
the corresponding probability of failure [10]

to be the shortest distance of the origin to the fail-
ure region. This value is computed in FORM and
SORM methods [9].

USACE [10] made specific recommendations
on target reliability indices in geotechnical and in-
frastructure projects, Fig. 3.

When additional and accidental loading gener-
ated by either permanent or transient ground de-
formation are superimposed on the internal pres-
sure of a gas or oil pipe, large stresses and strains
are produced in the pipe wall. Seismic activity, soil
subsidence, slope instability, frost heave, thermal
expansion and contraction, landslides, pipe reeling,
pipe laying, and other types of environmental load-
ing can be caused by these additional loadings.
In these cases, the stresses and strains exceed the
proportional limit. For such loading cases, the
Strain Based Design (SBD) is the most appropriate
one [1].

Displacements due to seism are obtained from
Eurocode 8 [11] which gives these displacements as
a function of the criticality of the seismic zone on
the Richter scale. The distribution of the seism am-
plitude is given by a distribution of Gutenberg -
Richter [12]. The Gutenberg — Richter law (GR
law) expresses the relationship between the magni-
tude and total number of earthquakes in any given
region and period.

In this paper, the probability of failure of a pipe
submitted to stochastic displacements due to a
seism is calculated according to the method of over-
lapping the demand and the resistance distribu-
tion. This pipe exhibits a corrosion defect which is
for a conservative reason, considers a semi-ellipti-

Table 1. Safety factors according to the safety classes

Strain safety Ll
factor Low Normal High
Safety class 15 2 3
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Table 2. Chemical composition of API 5L X60 steel

Additives C Si Mn

S v Nb Ti

% 0.16 0.45 1.65

0.010 0.07 0.05 0.04

cal defect. This defect is considered a stress concen-
trator. Therefore a local approach is necessary and
the strain resistance is considered as the local ef-
fective critical strain e,,. The effective critical
strain takes into account the sensitivity of the criti-
cal strain to stress triaxiality § and Lode angle 6;
according to the Wierzbicki and Xue [13] model.
The distribution of this local critical strain is as-
sumed to follow a Normal distribution. The de-
mand distribution is assumed to follow the French
“low” GR distribution.

The two distributions (the local strain demand
and the local strain resistance) allow computing
the probability of failure and reliability index ac-
cording to the seismic zone. The influence of the
coefficient of variation of the resistance distribu-
tion particularly for vintage pipe steels and the ex-
pected life duration of the pipeline is also studied.

Effective critical strain according
to Wierzbicki and Xue model [10]

It has been seen that failure resistance is sensi-
tive to stress triaxiality  [14 — 19] and Lode angle
0; [20 — 22]. The influence of stress triaxiality and
Lode angle is taken into account in the Mohr —
Coulomb (MMC) fracture criterion [23]

J3
)

1+C2
x[ +31 co ngl ([3+ jsin%el], (2)

where C,, C;, C;, and C; are material constants.
Here, the influence of § and 0; on effective failure

€. B,0,) = {C+ a- C)sng}
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Fig. 4. Geometry of the DENT specimens

strain e, is more simply described according to the
Wierzbicki and Xue model [13]:

Sef,'c(ﬁ: el) = 8%“[3([3)“6! (el): (3)

s% is the reference strain, i.e., the strain resistance
for a stress triaxiality and a Lode angle equal to
zero (B=0; 6,=0). The strain dependence to
stress triaxiality pg(B) is given by:

1p(B) = Be P, @)

B and C are material constants. The strain depend-
ence to Lode angle and is represented by equation
[13]:

5 ©0)=5+0- o 8l0d)" ®)
L)

§ is a material constant defined by the ratio of the
fracture strain between generalized shear 0, = /2
and generalized tension (8; = 0) subjected to the
same hydrostatic pressure.

In the following, the API 5L X60 steel pipe
is studied. Table 2 shows the chemical composition
of this steel. It is composed of 0.16% carbon and
several alloying elements, such as titanium and
niobium.

The API 5L X60 steel pipe has yield stress o, =
= 510 MPa, an ultimate strength o, = 610 MPa
and a failure elongation A% = 29.1%. The con-
stants B, C, and % of the Wierzbicki and Xue model
[13] have been determined from tensile tests on
tensile notched specimens and shear tests on
smooth specimens (parameter §).

Four tensile tests have been performed on Dou-
ble Edge Notch Tensile (DENT) specimens with
different notch radius [0.1; 0.25; 0.5; 0.75 mm)].
The geometry of specimens is reported in Fig. 4.
Elongations at failure of the DENT specimens are
reported in Table 3 (mean values of three identical
tests).

Table 3. Results of fracture tests on DENT specimens
made in API 5L X60 steel pipe

Notch radius, mm Failure elongation, %

Stress triaxiality

0.75 1.87 0.80
0.5 1.98 0.82
0.25 2.08 0.89
0.1 2.40 0.98
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Fig. 5. Geometry of the pure shear specimen

Equation (4) is written with fitted values of pa-
rameters C and B:

pp(B) = 7.8¢71:38, )

One notes that the value of parameter C' = 1.38
is close to the value generally found in literature as
C = 1.50[13, 14].

The material constant § from equation (5) is
obtained from two tests, namely, a shear and a ten-
sile test. The first test gives shear elongation at
failure g, and the second one gives tensile elonga-
tion at failure e The 8 parameter is given by the
ratio of these two failure elongations:

6= Sﬁs/Sf.

The geometry of the pure shear specimen is
given in Fig. 5. The values of ¢, & (%), and 8 pa-
rameter are given in Table 4.

Equation 3 with £ = 1 (equation (5)) is used to
compute the effective strain resistance e,.(, 0).
The elongation at failure in tension e is a particu-
lar case of effective strain resistance

er =g = 0.33, 6, = 0) = 29.1%. (7)

This value gives the reference strain resistance
gl = 16.22%.

Strain demand distribution
of a pipe submitted to internal
pressure and seismic loading

A pipe made in steel API 5L, X60 with a diame-
ter of 610 mm and a thickness of 11 mm is com-
pletely embedded in soil with a ground reaction co-
efficient of 100 MN/m? (Fig. 6).

This pipe is submitted to two actions: a 70 bars
internal pressure and stochastically local seismic
displacement. This displacement is a power func-
tion on seism amplitude M (Richter scale) accord-
ing to [24]:

A = 10-48+0.69M) (8)

The pipe is clamped at an arbitrary distance
of 13 m and the local displacement is assumed to
be superimposed at an equal distance between
two clamped ends. The pipe exhibits a corrosion de-
fect at 3 o’clock. This defect is considered as a
semi-elliptical crack size of depth d = 0.55 mm and

Pipe with internal pressure of 70
bars buried in an elastic soil with
a stiffness of 100MN/m?

Ground
stiffness
100MN/m?

Fig. 6. Embedded pipe in soil with a ground reaction coeffi-
cient of 100 MN/m3

aspect ratio c/e = 18.5/31 = 0.59, where ¢ is the de-
fect semi-axis width and e is the defect semi-axis
length.

The local strain resulting from this displace-
ment is computed by the Finite Elements method
using Abaqus software. The pipe and the defect are
meshing with 3D hexaedric elements Fig. 7.

The stress-strain behavior of the material is as-
sumed to be elastic-plastic. It is obtained from a
tensile test and presented as the true stress-strain
curve (Fig. 8).

Figure 9 shows an example of the strain distri-
bution ahead of the corrosion defect where the lo-
cal strain is plotted versus the distance ahead of
the defect tip. The effective local strain is obtained
from the Volumetric Method (VM) procedure [25]
from this strain distribution. Using the VM proce-
dure, the effective distance X,; is determined at the
position where the relative stress gradient is mini-
mum. The corresponding value on the strain distri-
bution is the local strain demand according to the
concept of the effective strain criterion. This con-
cept assumed that the effective strain is not the
maximum strain because the process zone cannot
be reduced to one point.

Table 4. Results of shear and tensile test and value of 6

8f;s? % 8f? % 6
6.38 29.1 0.23




74 «3aBoackasa maGoparopuna. [luarnocruka marepuanos». 2023. Tom 89. Ne 3

Fig. 7. Meshing in the zone near the crack-like defect
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Fig. 8. The true stress-strain curve of APISLX60 pipe steel
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Fig. 9. Local strain distribution for a pipe displacement of
9 mm corresponding to a seismic wave of amplitude M = 4

The seismic distribution is described by the
Gutenberg — Richter (GR) [12] distribution accord-
ing to the following equation:

NM) = 10°-*M, C))

where N(M) is the number of seismic waves of M
amplitude during the observation time (one year).

Table 5. Parameters of the GR seismic distribution in the
considered seismic zone [24]
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Fig. 10. Displacement distribution due to seismic waves
N =fla)

18 @
1.6
w
1.4
N1z e
2 o
08 @ i
K N = 0.22¢,29
0.6 5
<
04 o
%,.
02 "o,_‘ .
0 - ‘............-.
0 2 4 6 8 10 . £
€4, MM

Fig. 11. Strain demand distribution due to seismic waves
NM) = fley)

The GR distribution law is valid for M < M.,
where M. is the maximum seism amplitude for
the considered seismic zone. The parameters of the
seismic distribution are given in Table 5.

Figure 10 reports the number of seismic waves
of M amplitude versus the corresponding displace-
ment N(A) = f(A) according to the parameters of
Table 5 and equation (9):

N = f(A) = 0.19A7989, (10)

Figure 11 reports the number of seismic waves
of M amplitude versus the local strain demand
NM) = floy):

N(M) =0.22¢ 092, (11)

The strain demand distribution due to seismic
waves g; = f(M) is represented by a power distribu-
tion with mean value p; = 3.16% and standard de-
viation oz = 3.95%.

Distribution of the strain resistance

Ten tensile tests have been performed on ten-
sile specimens made with API 5L X60 pipe steel.
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Results of failure elongation ¢, are presented in
Table 6.

According to the value of kurtosis and skew-
ness, the assumption of a Normal distribution is
justified. The coefficient of variation of elongation
to failure COV, = 0.18 is higher than those of
yield stress COng = 0.05.

The strain resistance e5 is derived from the dis-
tribution of failure elongation in tension with a
triaxiality p = 0.33 and a Lode angle 6; = 0:

Sf = SR(ﬁ = 033, Gl = 0) (12)

The strain resistance e is computed for a cur-
rent stress triaxiality p* which is reported in
Fig. 12 versus the displacement A. The strain resis-
tance is associated with the studied component and
is not a material characteristic. Therefore, it is nec-
essary to compare the strain demand and the
strain resistance with the same triaxiality and
Lode angle. According to the model of Wierzbicki
and Xue [13], the ratio of strain resistance in ten-
sion under B* triaxiality is equal to:

ep(3=0.33) _ (B =0.33)pg,(0,,2)

: (13)
enB=P g =p g, 0))

The Lode angle in tension is equal to zero and
the current Lode angle 0] is close to zero. There-
fore, we assume that the Lode angle correction is
close to 1.

One notes that in the displacement range [20 —
90 mm] the stress triaxiality is practically constant
with an average value B* = 0.87. The correction
factor is

exp(-Cp*)

5 = _ _— 14
ERppr TERP-0.33 exp(-0.33C) (14)

with C = 1.38. The value of the average correction
is 0.47. The statistical parameters of the strain re-
sistance distribution for the studied case are re-
ported in Table 7.

ﬁ*
12
1.0
0.8
0.6
04
0 50 100 150
A, mm

Fig. 12. Evolution of the current stress triaxiality §* ver-
sus displacement A

Probability of failure

The difference between the strain demand and
the strain resistance represents the failure bound-
ary function (FBF) g(d, R). This FBF is given by

g(d, R) = d(gy) - R(eg), (15)

d(e,) represents the strain demand and R(g) is the
strain resistance. The resistance (R) and the de-
mand (d) functions involve random variable(s)
with different probability density distribution
functions (PDF). One assumes that the resistance
(R) and the demand (d) are independent variables
with respective PDF p,; and py. The failure proba-
bility is represented by the overlay of these PDF's
as indicated in Fig. 13. The probability of failure is
given by:

R
Pild>Rl= [p,d,RdddR,  (16)
d-R>0

pa r(d, R) represents the joint density probability
distribution function. In another way the probabil-
ity of failure P;is given by the following condition:

P;=P(g <0). (17

The joint density probability distribution func-

tion p; p has a mean value p, and a standard devia-
tion o, with:

He = Vg~ Ha» (18)

Bz, B are the mean values of the resistance and de-
mand distributions, respectively. The standard de-

Table 6. Statistical distribution parameters of elongation to failure of API5L X60

Mean, % Standard deviation, % Kurtosis

Skewness cov Number of specimens

29.03 5.26 -1.79

0.059 0.18 10

Table 7. Statistical distribution parameters of strain resistance g5 ; _ g« of API5L X60

Mean, % Standard deviation, % cov

Number of specimens

Kurtosis Skewness

11.58 4.43 0.396

10 -1.21 2.75 x 10-15
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Fig. 13. Failure probability =8
The cumulative probability P,:
viation of joint density probability distribution P,R) =P d<R)=1-P,d > R), 27
function o, is given by:
: - B an—x
6, =403 +02, (19) Pyleg) = meg", Py(R) =1~ 1-x "’ (28)

op and o, are the standard deviations of the resis-
tance and demand distribution, respectively. The
reliability index is defined as the ratio:

He _ Mp —Hg

G {2 2
g GR+Gd

Several methods are used for assessing the
probability of failure and reliability index. The
Monte-Carlo method and the first and second-
order reliability methods (FORM and SORM) re-
quire derivation of the limit state function. Here, a
simple analytical method is proposed assuming
that the resistance (R) and the demand (d) density
probability functions are represented by simple
functions:

Y= (20)

P/lg<0l=PIR-d<0]= [[ P, (R,d)dRd(d) =
R<d
= [[ P, (RP,(d)dRdd,
R<d
P; = [[ Py (R/P;(d)dRdd =
R<d

+oo’7 R
]

(21)

= [| [ Pr(RR

—00| —o0

}»d (d)dd, 22)

n and A are the parameters of the strain demand
distribution. The probability of failure is given by
the following equations

R
B an—x T
B _&1—{1— T jJPR(R)dR, (29)
+0 o 1(Rpg :
Pf:jl—[l—nf_l;j\/%e 2[ o de. (30)
0 R

Equation (30) has been computed using param-
eters given in Table 7. The GR distribution is lim-
ited to M, . M .x =6.2 in our case). The corre-
sponding strain demand is so high that an infinite
boundary has been chosen. Values of parameters of
equation (380) and the probability of failure are
given in Table 8. The failure probability is high
when it is compared with recommended values for
pipes P;< 10-°. Therefore, a maintenance opera-
tion is necessary to repair the corrosion defect. The
high values of the failure probability are explained
by the intensity of the GR distribution which corre-
sponds to a low seismic zone associated with a se-
vere defect. This defect is considered as not admis-
sible with traditional defect assessment and a de-
terministic safety factor less than 2.

Table 8. Values of parameters of equation (30) and the probability of failure

Pr Or

A

0.115 0.044

0.616

0.0007 1.8 x 104
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Table 9. Values of parameters of equations (31) and (32), reliability index and safety factor are given from a new definition

Pr, % Bao5 % og, %

og % v fe

11.30 3.165 4.47

3.95 1.36 3.57

Table 10. Values of parameters of equations (31) and (32), reliability index and safety factor from clean and vintage steels

Steel By, % B4, 0.05 % o4, % v* fe
Clean 11.30 3.165 3.95 1.36 3.57
Vintage 11.30 3.165 3.95 1.22 3.57

Safety factor

The safety factor f; [7] is for a stress-based de-
sign, generally it is defined by:

fs = Mr/hg- (31)
The following ratio give the reliability index y:

__Hr ~Hg
Y=
o +c2

The values of the mean and standard deviation
for the demand and the resistance are reported in
Table 9.

One notes that the definition of the safety fac-
tor (equation (31)) has been established for two
Normal distributions and stress-based design. In
our case, we compare a Normal distribution with a
non-symmetric GR distribution with very high
COV (COV,; = 1.41). For this reason, Equation (31)
is modified by using the median p;,5 (%). The
value of 11, 5 is reported also in Table 9

fs = Br/Maos (33)

The value of the safety factor is high and asso-
ciated with a low probability of failure P,=
= 1.8 X 10 The value of the reliability index y* is
compared with the value which is given by USACE
guidelines for the reliability index [10]. One notes
that the situation is between “poor” and “unsatis-
factory.” This means that the defect must be re-
paired during a maintenance operation.

(32)

Discussion

Influence of the COV of the pipe steel. 1t is now
admitted that the scatter of material properties is
also a material property. This scatter is appreciated
with the Coefficient of Variation (COV) which is
the ratio of the standard deviation and the mean.
The COV depends on the studied property of the
material. For example, for the pipe steel API5L
X60, the COV associated with the elongation of fail-
ure is higher than the one associated with yield
stress COVaf = 18% > COV% =5%. The COV

strongly correlates with the microstructure i. e the
grain size and the inclusions content. This is the
reason that for a vintage pipe steel, the COV_ is
generally more than two times the value of those of
recent and clean pipe steel. The reliability index
and the safety factor has been computed using
equations (31) and (32) assuming that the standard
deviation of a vintage API5S5L X60 steel is 20%
higher than the value of the same clean steel. In
this study, the COV of the strain resistance distri-
bution for the vintage pipe steel APISL X60 is
COVy = 0.39.

Results are presented in Table 10. One notes a
decrease in the reliability index (10%), but the
safety factor is unchanged. Therefore, the reliabil-
ity index associated with the probability of failure
is a better representation of the criticality of the
situation than the deterministic safety factor.

Influence of the reference period. As indicated in
equation (34), the probability distribution of the
strain demand follows a power-law:

Pyeg) = ms (34)

1 and A the parameters of the strain demand distri-
bution and have been established for a reference
period of one year. Assuming that the occurrence of
a seismic wave with a magnitude greater than M
is proportional to the reference period, the parame-
ter 1 is proportionally modified for the reference
period 10 years and 50 years, and the A parameter
is kept constant, (fifty years is the traditional refer-
ence period for a pipe). The probability of failure
is computed for the three reference periods (1, 10,
and 50 years) and the results are reported in
Table 11.

One notes a very strong increase in the failure
probability with the increase of the reference pe-
riod. One concludes the strong necessity of periodic
maintenance and repair operations when a pipe is
located in a seismic zone.

Influence of seismic zone. France is divided
into 4 seismic zones (very low, low, moderate and
average) as indicated in Fig. 14. The GR distribu-
tion (equation (34)) is different according to the
seismic zone. The corresponding GR distribution
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Fig. 14. Seismic zones in France

parameters are reported in Table 12. The studied
case corresponds to a “low “seismic zone.

The failure probability for the studied pipe (de-
fect + internal pressure) is sensitive to the seismic
zone and only the “very low” seismic zone satisfies
the criterion P, < 10-5.

CONCLUSION

Strain Based design is based on a comparison of
strain demand and resistance and takes into ac-
count material strain hardening. The probability of
failure consists to compute the common area of the
strain demand and resistance distributions.

A qualitative approach consists also to compute
the reliability index (RI) from formulae that incor-

Table 11. Parameters of equation (35) and probability of
failure for 3 reference periods

Reference period A n Py
1 year 0.62 0.00077 1.8 x 104
10 years 0.62 0.0076 1.7 x 103
50 years 0.62 0.039 102

Table 12. Parameters of equation (34) and the probability
of failure for 4 seismic zones for the studied pipe

Seismic zone A n Py

Very low 0.93 3.87 x 105 9.8 x 105
Low 0.62 0.00077 1.8 x 10+
Moderate 0.76 0.0041 2.1 x 103
Average 0.81 0.006 4.3 x 103

porate the mean and standard deviation of strain
demand and resistance. An acceptable value of RI
is given by the probabilistic Model Code (PMC) and
is over 3 for a reference period of 50 years. The an-
alytic tool is based on a simple method and the
strain demand distribution has been fitted by a
simple power function.

In the studied case, the reliability index is be-
tween poor and unsatisfactory (1.36), but the load-
ing conditions are severe, however, the seismic dis-
tribution is classified as “low,” and the corrosion
defect is classified as acceptable according to the
criterion of fracture mechanics. The proposed tool
for probabilistic SBD can be used for the less se-
vere situations.

Improvement of the method can be done
using FORM and SORM methods with a loss of
simplicity.
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