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The article develops an idea that the stress-strain curve for an arbitrary material is the 
extremum of some functional. However, for irreversible processes, the using of the principle of 
stationarity of some functional is incorrect, because due to the dissipation of the deformation 
process, the possible work of internal forces is non-integrable. Therefore, it is proposed to use 
the generalized variational principle of L. I. Sedov for modeling the stress-strain curve of 
elastoplastic materials. A concept of sequential inclusion of certain deformation mechanisms 
on different segment of the stress-strain curve is proposed. According to this concept, each sec­
tion of the stress-strain curve must correspond either to the stationary value of the correspond­
ing functional, or to the stationary value of the non-integrated form of variations of the corre­
sponding stress derivatives. The combination of naturally obtained spectra of boundary condi­
tions at the ends of each segment leads to a variation-consistent formulation of the system of 
boundary and contact conditions of solutions of different differential equations on each seg­
ment of stress-strain curve. As a result, it is possible to construct a differentiable stress-strain 
curve over the entire area of the stress-strain curve definition. The resulting solution, in con­
trast to the Ramberg - Osgood empirical law, has a strictly liner segment. The obtained mathe­
matical model was tested on experimental data of materials for various industrial purposes. 
The achieved accuracy of the mathematical model is sufficient for engineering applications. 

Keywords: Ramberg - Osgood law; empirical stress-strain curves; stress-strain curve as a so­
lution of the ordinary differential equation of the fourth order; stress-strain curves as an ex­
treme of functional; processing of experimental data. 

Introduction 

Several empirical models have formulated in 
the literature that describe the stress-strain curve. 
One of the most popular models is the Ramberg -
Osgood model [1]. This model is popular among sci­
entists involved in modeling the properties of ma­
terials [ 2 - 2 1 ] and among engineers who solve 
problems of structural design of plastic materials 
[ 2 2 - 2 9 ] . 

There are two approaches to modeling the 
properties of elastoplastic materials. The first ap­
proach is the compilation of universal curves de­
fined by one formula in the entire range of strains 
[ 1 , 4 - 9 , 3 0 ] . 

The second approach is to formulate the 
stress-strain curve as a multilink spline with two 
[10 - 18], three [19 - 21], or four [15] segments. 

The Ramberg - Osgood law corresponds to the 
first approach. 

It was shown [11] that the empirical Ramberg -
Osgood law has two significant drawbacks limiting 

its use, both in modeling the properties of materi­
als and in the design of structures from them. 
First, the modulus of the tangent to the stress-
strain curve corresponding to the R a m b e r g -
Osgood law for an engineering curve cannot take 
on a value of zero at the point of ultimate strength. 
Therefore, this law is incompatible with the condi­
tion of theoretical strength. Secondly, according to 
the Ramberg - Osgood law, the tangent module is a 
monotonically decreasing function, and therefore 
the stress-strain curve has no linear segment. 

1. In [11] an alternative empirical model was 
proposed, which is not defined on the segment 
0 < e' < 1, but on the segment s* < e* < 1. On the 
segment 0 < e* < s * postulated strictly linear law: 

E*£*,0<£* <e 

F , V -(El -1) 
e - e 

1 - е , 
, e ; < e * < l . 

(1) 
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Неге о* = о/ос, е* = е/ес and (s c *; о с * ) — are 
the coordinates of the point of ultimate strength of 
the material on the stress-strain curve. This alter­
native empirical model is equivalent to the stress-
strain curve must be divided into two fundamen­
tally different segments, separated by a character­
istic point for each material — point, which is 
called "proportionality limit" and has coordinates 
(s*; a*) . The first segment of the stress-strain 
curve — strictly linear. The constant modulus of 
elasticity E*e = s * / o * and the parameter q = 
= (1 - б * )/(l - s * /o *) can be determined through 
the coordinates of a point called the "proportional 
limit." 

2. Developing this idea, it was assumed in [17] 
that a solution of some ordinary fourth-order dif­
ferential equation can be used on a nonlinear seg­
ment, since the stress itself and its derivative (the 
tangent modulus to the stress-strain curve) must 
be specified at the ends of the nonlinear segment: 

S *V"" + 4eV" ' + (2 - q)o*" = 0. 

The solution of (2) gives: 

a *(e*): 
JC0 + C V +С2е*П2 + C V \ 0 < e * <e*e 

+ c 3 e * ' \ e ; < e * <1. 

(2) 

(3) 
c n + Ci8 + c 9 e 

The boundary conditions (4) - (5) are: 

a*(0)=0 о*(б!)=а 

a"(0)=E'e'[a"(e'e)=E, 

a ( e J = o „ о (1)=1 

a ' ( E ) = B ' o " ( D = 0 

, o < e * < £ ; , 

el < e * < l . 

(4) 

(5) 

Satisfying the boundary conditions and substitut­
ing in (3) one can obtain the stress-strain curve. 

3. The next step in stress-strain curve mathe-
matic modelling is the idea, that there is some 
functional exist, the stationarity value of which 
will give not only a kinetic equation for stress, but 
a variation-coordinated spectrum of boundary con­
ditions on each segment of stress-strain curve. In 
[29] it has been shown, that on different segments 
desired functional has a different number of sum-
mands defining different "deformation mecha­
nisms." As the result, each new "deformation 
mechanism" change the structure or order of dif­
ferential equation on the current segment. For 
nonlinear-elastic materials, such functional has the 
form: 

£* £ c * 

U = - J Ana *' a *' de* + - J [A22e*2a *"a*" + 

The summand A22e*2o*"o*", which is included 
on the second segment of the stress-strain curve 
and continues to act up to failure, defines the "sec­
ond stress-derived square" mechanism. 

The summand 2A2ie*o*"o*' defines a "bilinear 
on the second and first stress-derived" mechanism, 
which includes on the second segment of the 
stress-strain curve simultaneously with the "qua­
dratic" one and continues to act further. 

The summand Ano*'o*' defines the only defor­
mation mechanism acting on the first segment and 
corresponding to the linear Hook's law equation. It 
does not "turn off" and continues to operate on the 
second segment. Naturally, the parameter value 
A n defining this mechanism must have the same 
value throughout the segments of stress-strain 
curve on which this mechanism act. The require­
ment of stationarity of functional (6) gives 

817=0. (7) 

Unlike the previous approach, on different seg­
ments of stress-strain curve the curve defined by 
different kinetic equations. Really, on segment of 
linearity the kinetic equality is 

0. (8) 

On segment of nonlinearity the kinetic equality is 

s*2o*"" + 4e*o*'" + (2 - q)o*" = 0. (9) 

+ 2A 21* + A, ']de* (6) 

Here q — physical parameter, reflecting mechani­
cal properties of the material and connecting with 
parameters A22, A21, A n . The variation principle (7) 
gives a consistent system of boundary conditions 
and conjugation conditions for solutions of kinetic 
equations (8) and (9). 

4. However, for irreversible processes, the us­
ing of the stationarity principle of some functional 
is not correct, because, due to the dissipation of the 
deformation process, the possible work of internal 
forces is non-integrable. The non-linear segment 
should divided into two segments. 

On the first segment there is no dissipation and 
the deformation processes reversible, but nonlin­
ear. In the second section, the dissipation process 
starts and deformations become irreversible and 
nonlinear. Both parts separated by specific point of 
material (s r*;o r*)- This point will called the "re­
versibility limit." Really, before this point stress-
strain curve describes reversible process of deform­
ing. If process of deforming pass through this 
point, it becomes irreversible. That is, the process 
of dissipation is "turned on" behind the "reversibil­
ity limit" point ( s r *;o r *) , and some sort of dissipa­
tion process start to act. 

This article dedicated to the realization of this 
idea. 
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Formulation of diss ipative model 
as principle of stat ionarity 
of non-integrated l inear var iat ion form 

In [22], a generalization of the L. I. Sedov vari­
ation equation for modeling irreversible processes 
was proposed. The essence of generalization is that 
Sedov's variation equation represented as the sum 
of variation of the functional of the reversible part 
plus the set of dissipation channels. The simplest of 
non-integrated linear variation form called the 
"dissipation channel." Its arguments formed by 
one of the bilinear terms in the functional of the re­
versible part. In the present case of the reversible 
part of the functional, there is only a single dissipa­
tion channel can be: 

rl/ 21 JS2! e*(o*"8o*'-o*'oo*")de : 
(10) 

Behind the point (s*;o*), the variation princi­
ple of stationarity of functional (7) becomes incor­
rect and replaced by the variation principle of 
stationarity of the non-integrated variation form: 

8U+aU 21 = 0. (11) 

This variation principle can simulate stress-
strain curve of elastoplastic materials. We follow 
the concept of sequential inclusion of various defor­
mation mechanisms on different segments of the 
stress-strain curve. According to this theory, the 
stress-strain curve will divided into three seg­
ments: linear reversible segment 0 < e* < s*, non­
linear reversible segment s* < e* < s * and nonlin­
ear irreversible segment s* < e* < s*. 

Constructing stress-strain curve 
as a conjunction problem 
for three solut ions 

Linear reversible segment 0 < e* < s *. Modeling 
the stress-strain curve with the simplest quadratic 
functional, we obtain a linear strain model: 

U 

£ e 

*'o*'de*. (12) 

Here A n — a physical parameter reflecting the 
mechanical properties of the first deformation 
mechanism. 

The stationarity condition of (12) gives the 
kinetic equation of the stress-strain curve as well 
as the natural boundary conditions: 

8Г7 = | A11o*'So*'de * = J - A n o * " S o * de * + 

+ A n o* 'So* |^ = 0. (13) 

Kinetic equation, follows from (13): 

a*" = 0. (14) 

The solution to kinetic equation (14) is as follows: 

o* = C0 + Cqe*. (15) 

According to (13), assuming that stresses are 
set at the ends of the segment (stresses variations 
are zero), we obtain: 

o * ( 0 ) = 0 

a * ( e * ) = o * 

C 0 = 0 

Ci =K 
de) 

Here E*e = o*/s* — dimensionless Young's modu­
lus; e *, о * — dimensionless coordinates of a point 
of proportionality limit on a stress-strain curve. 

Linear Hooke's law on a stress-strain curve on 
segment 0 < e* < s * as a result received: 

E: (17) 

Nonlinear reversible segment s * < e* < s *. As 
already noted in the introduction, on a nonlinear 
segment, the differential equation must be a 
fourth-order equation. Accordingly, an additional 
component containing the square of the second 
stress derivative should appear in the functional. 
We will treat the appearance/disappearance of the 
additional deformation mechanism in the func­
tional as "on/off." 

When passing through the proportional limit 
point, on the second section of the stress-strain 
curve, the simultaneous activation of two new de­
formation mechanisms postulated, and the func­
tional becomes: 

U . 1 ^ 2 2 * . * 2 a * " o * " + 2A * o * " o * ' + 21£ 

+ A11o*'o*']de* (18) 

The deformation mechanism, determined by 
physical parameter A22o*"a*", which is start to act 
on the second segment of the stress-strain curve 
and continues to act further, is defined by the "sec­
ond stress-derived square." 

The deformation mechanism, determined by 
physical parameter A2iO*"o*', defines a "bilinear 
on the second and first stress-derived" deformation 
mechanism, which start to act on the second seg­
ment simultaneously with the "quadratic" one and 
continues to act further. 

The only deformation mechanism acting on the 
first segment and corresponding to the linear 
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Hook's law equation, does not " t u r n off" and con­
tinues to act on the second segment. Otherwise, 
the functional (18) would not positively defined, 
and the corresponding solution would not be the 
only one. Naturally, the parameter A n value, defin­
ing this mechanism, must have the same value 
throughout the segments of stress-strain curve on 
which this mechanism act. 

The variation equation on the second segment 
of the stress-strain curve is: 

8Г7 = I [ A 2 2 e 2 o " " + 4A 2 2 eo'" + 

+ (2A22 + A 2 1 -A n )o"]Sode + 

+ (A22e
2a" + A 2 1eo')So' |^ - [ A 2 2 e V " + 2A 2 2eo" + 

+ ( A 2 1 - A n ) o ' ] 8 o | ^ = 0 . (19) 

Kinetic equation: 

s*2o*"" + 4e*o*'" + (2 - q)o*" = 0. (20) 

Material parameter 

Д.. - Д „ . 
(21) Ц 

.4*11 ~A2i 

l 22 

The solving of kinetic equation (20), taking into 
account (21), is as follows: 

o*(e*) = c0 + cur* + c2e *"2 + c3e *n^. (22) 

According to (19), assuming that stresses are 
set at the ends of the segment (stresses variations 
are zero) and tangent modulus are set in addition 
(stresses derivative variations are zero), we obtain: 

the boundary conditions for solution on 
nonlinearity reversible segment when e* = s * 

& / * \ * * « 2 * я 3 * 

a*(ee)=c0 +c1ee +c2ee + c3ee =ae 
•kr / * \ * « 2 ~ 1 * га я - 1 7 - T * 

o * ' ( e J = c 1 +c2n2ee + c3n3ee = Ee 

(23) 

the boundary conditions for solution on non-
linearity reversible segment when e* = s * 

Г -k / * \ * * « 2 * я 3 * 

(J ( , £ r ) = C 0 + C 1 £ r + C 2 £ r + C 3 £ r = G r 
1 sfe r / * \ * П 2 ~ 1 * П 3 - 1 T7T* 

[a*(er)=c1+c2n2er +c3n3er = Er. 

(24) 

Nonlinear irreversible segment s* < e* < s * . As 
already noted in the introduction, that on a nonlin­
ear interval two segments must exist. The first, de­
scribed above, defines the deformation process 
throughout is reversible. The second should take 
into account irreversible deformation processes, 
which determines the plasticity property. This 
means, that when crossing the reversibility limit 

point, a new, dissipative deformation mechanism 
(10), turned on. At the same time, all previous 
mechanisms also continue to act. A generalization 
of the L. I. Sedov variation equation becomes as 
(11). Taking in account the structures (10) and 
(19), the stationarity requirement of this non-inte­
grated variation form (11) yields the following vari­
ation equation: 

8U +8U21 = | [ A 2 2 e * 2 o * " " + ( 4 A 2 2 - 2 S 2 1 ) e * o * ' " + 

+ (2A22 + A 2 1 - A n -3S 2 1 )o*"]So*de* + 

+ [A 2 2 e* 2 a^" + (A21 - В 2 1 ) е * о * ' ] 8 о * ' Г | -

- [ A 2 2 e * 2 o * ' " + 2 ( A 2 2 - S 2 1 ) e * o * " + 

+ (A2 1 - A n -S 2 1 )o* ' ]So* |J =0. (25) 

Together with the already introduced parame­
ter (21), we introduce a new physical parameter of 
the material 

I) = S21/A22. (26) 

Kinetic equation, follows from (25): 

s*2o*"" + (4 - 2t>*o* '" + (2 - q - 3Da*" = 0. (27) 

The solving of kinetic equation (27), taking into 
account (21) and (26), is follow: 

o*(e*) = a0 + oqe* + а2е*п* +a3e' (28) 

According to (25), assuming that stresses are 
set at the ends of the segment (stresses variations 
are zero) and tangent modulus are set in addition 
(stresses derivative variations are zero), we obtain: 

the boundary conditions for solution on non-
linearity irreversible segment when e* = s * 

a ( e r ) = a 0 + a 1 e r + a 2 e r

 4 + a 3 e r

 б = o , 
n, -1 o * ' ( e r ) = a 1 + a 2 n 4 e r

 4 + a 3 n 5 e 
*nE-l 

•El 
(29) 

the boundary conditions for solution on non-
linearity irreversible segment when e* = s * = 1 

о * (1) = a0 + a-y + a2 + a3 = o* 

o*'(l) = n 1 + a2n4 + a3n5 =E*. 
(30) 

Ten parameters C0; Cq; c0; cx; c2; c3; a0; a x; a 2; a 3 

are determined from the solution of the problem of 
conjugation of the stress-strain curve at the con­
tact points (16), (23), (24), (29) and (30). Thereaf­
ter, the stress-strain curve can plotted from known 
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0.4 0.6 
Normalized deformation е* 

Fig. 1. Theoretical stress-strain curve and experimental 
data for 30CrMnSiNi2A armor steel (16532 CSN): e! = 
= 0.14199, ст* = 0.79231; e*r = 0.20081, cq = 0.91154; EQ = 
= 5.60; S = 0.0048 

A selection of 469 experimental points 

Theoretical curve 

# Proportional limit point 

О Reversibility limit point 

0.4 0.6 
Normalized deformation e* 

Fig. 2. Theoretical stress-strain curve and experimental 
data for 40Cr2Ni2MA armor steel (4340 ASTM): e* = 

0.65885, a'e = 0.82437; < 
1.25; S = 0.0033 

0.76546, CTI = 0.92473; E, 

physical parameters or determine these parame­
ters using a sample of experimental points 

C 0 + C 1 e * f o r 0 < e * < e * . 

c 0 + CAE * + c 2 e *"2 + c 3 e *"3 for e* < e* < e* (31) 

a0 + a 1 e * + a 2 e * " " i + a 3 e * " 6 fore* < e * < e * . 

Tangent modulus: 

E* 

C1 for0<e*<e* 

(Ci + С , П , 8 2'4* 
*тг 9 -1 

a1 + a 2 n 4 e * r e 4 - l 

+ c 3 n 3 e 

+ a 3 n 5 e 

* т г я - 1 

* r e K - l 

fore 

fori 

< e * < £ ; 

* < e * < e * 

(32) 

Formally, physical parameters, determining 
mechanical properties of elastoplastic material, are 
coordinates of three characteristic points of stress-
strain curve (s*; a*), ( s r * ;o r *) , ( s*; s*), as well as 
parameters, characterizing acting deformation 
mechanisms A22, A21, A n , B21: 

•ci = Ct^l ,o*e ,E*r ,a*r ,E* ,E* ,п2(ц),п3(ц)) (33) 

ai =ai{z*r,o*r.,E*r.,E*c,nA{l,,x\),nb{l,,x\)). 

However, in the model under consideration, 
due to the normalization, the absolute values of the 
coordinates of the ultimate strength point (s*; oc) 
are not included in the curve equation. In addition, 
between four parameters A2 2, A2 1, An, B 2 1 , only 
two their linear combinations E), q are included in 
the curve equation. 

As a result, the constructed theoretical curve 
(31) is an eight-parameter curve: 

'ci =с1(Е*е,а*е,е*г,а*г,Е*,Е*,ц) 
ai =ai(E*r,a*r,E*r,E*c,^,'e). 

(34) 

Special attention should paid to the parameter 
E* that is most likely to be associated with other 
physical parameters, by analogy with E*e = o*/s* . 
Moreover, it may be possible to formulate three ad­
ditional restrictions, either local or integral, that 
allow as to express physical parameters through 
the coordinates of the curve's feature points. As a 
result, the number of physical parameters will de­
termined solely by the number of characteristic 
points on the curve and the values of the tangent 
moduli at these points. 

Thus, the result obtained suggests that, in gen­
eral, all properties of elastoplastic materials deter­
mined by the geometry of the stress-strain curve. 
The proof of this hypothesis will be the subject of 
further research. 

Methodology for process ing 
experimental data 

There is used a Gradient Descent Method to 
processing the experimental data, based on a nu­
merical search for the minimum sum of the qua­
dratic deviations theoretical stress-strain curve as 
a function of seven parameters on a finite number 
of sample data points [12, 14, 17]. 

The analysis of the predictive power of the con­
sidered theoretical model carried out on materials 
from four groups, two materials from each group. 
Armor steels were chosen 30CrMnSiN2A (16532 
CSN) and 40Cr2Ni2MA (4340 ASTM); aerospace 
alloys D16A (2024 USA) and BT6 (6A1-4V Grade5); 
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• A selection of 469 experimental points 

Theoretical curve 

• Proportional limit point 

О Reversibility limit point 

0.4 
Normalized deformation e* 

Fig. 3. Theoretical stress-strain curve and experimental 
data for aluminum alloy D16 (AA2024 USA/ANSI H35.2): 
e*e = 0.01706, a*e = 0.57955; e*r = 0.12580, a* = 0.79545; 
E*0 = 28.00; S = 0.0105 

• A selection of 470 experimental points 

Theoretical curve 

• Proportional limit point 

О Reversibility limit point 

0.4 0.6 
Normalized deformation e* 

Fig. 6. Theoretical stress-strain curve and experimental 
data for pipeline steel 20ХГР (1.5526 DIN): E* = 0.02553. 
a* = 0.76033; e*r = 0.11489, o> = 0.92975; E'0 = 24.00; S = 
= 0.0089 

1.1 

1.0 

0.9 

» 0.8 

I 0.7 
£ 0.6 

I 0.5 
1 0.4 
I 0.3 

0.2 

0.1 

0.0 

ш A selection of 158 experimental points 

—Theoretical curve 

) Proportional limit point 

Э Reversibility limit point 
— i — i — i — i — 

0 0.2 0.4 0.6 
Normalized deformation s* 

Fig. 4. Theoretical stress-strain curve and experimental 
data for VT6 titanium alloy (Ti-6A1-4V USA/AMS): E! = 
= 0.21592, a* = 0.72725; e* = 0.27963, o> = 0.88397; E0 = 
= 3.40; S = 0.0123 

0.4 0.6 
Normalized deformation e* 

Fig. 7. Theoretical strain curve and experimental data for 
steel for general engineering St3sp (A414 GradeA): e* = 

0.09269 
5.70; S 

a e = 0.53903; e* 
= 0.0086 

0.17784, o-I = 0.73209; E, 

:/j 
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T1 
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• A selection of 5 37 experimental points 

—Theoretical curve 

Ш Proportional 

Э Reversibility 

limit point 

limit point 

0.2 0.4 0.6 
Normalized deformation e* 

Fig. 5. Theoretical stress-strain curve and experimental 
data for pipeline steel 08X18H10 (304 USA/ASTM): e! = 
= 0.01676, ст* = 0.35336; e^ = 0.06890, a*r = 0.45583; E0 = 
= 18.00; S = 0.0124 

• A selection of 582 experimental points 

Theoretical curve 

• Proportional limit point 

О Reversibility limit point 

0.4 0.6 
Normalized deformation e* 

Fig. 8. Theoretical strain curve and experimental data for 
steel for general engineering 35 (A682 Grade 1035 
USA/ASTM): E* 
a ! = 0.68996; E, о 

0.06750, ae = 0.46288; s/ = 0.21000. 
7.30; S = 0.0278 
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pipeline steels 08Х18Н10 (304 ASTM) and 20XGR 
(1.5526 DIN); steels for general engineering St3sp 
(A414 Grade A) and steel 35 (1035 ASTM). 

Theoretical stress-strain curves construct in 
accordance with (31) after determining the physi­
cal parameters of materials (Figs. 1-8). 

CONCLUSION 

The article develops the idea that stress-strain 
curve is an extreme of some functional. According 
to the concept of activation of different deforma­
tion mechanisms on different sections of stress-
strain curve, each segment of stress-strain curve 
must correspond to its functional. The naturally 
obtained spectrum of conjunction problems for 
these functionals leads to a variation-consistent 
formulation of the system of boundary and con­
junction conditions of solutions to different differ­
ential equations on each segment of the stress-
strain curve. This approach extends to dissipative 
deformation processes. In accordance with the gen­
eralization of L. I. Sedov, the variation of the func­
tional on the nonlinear irreversible segment com­
plemented by a non-integrable linear variation 
form that determines the dissipation process. The 
principle of stationarity of the functional replaced 
by a more general stationarity principle of non-in­
tegrable linear variation form. For verification, 
curves constructed for two types of armor steel, 
two aviation alloys, two pipe steels and two types of 
steel for general mechanical engineering. The stan­
dard deviation of the theoretical curve for samples 
of armor steels did not exceed 0.5 %, for aerospace 
alloys it turned out to be about 1 %, for pipe steels 
a little less than 1 %, for machine-building steel 
without a hardening zone less 1 %, and for ma­
chine-building steel — less than 3 %. The achieved 
accuracy of the mathematical model sufficient for 
engineering applications. 
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