УДК 669.35:543.424

ОПРЕДЕЛЕНИЕ ОСНОВНЫХ КОМПОНЕНТОВ АМОРФИЗИРУЮЩИХСЯ СПЛАВОВ СИСТЕМЫ Cu – Zr¹

© Н. В. Печищева², О. В. Евдокимова², А. В. Майорова², К. Ю. Шуняев^{2,3}

Статья поступила 18 декабря 2015 г.

Разработана экспрессная методика определения меди и циркония в их бинарных сплавах $Cu_{100-x}Zr_x$ в интервале содержаний, соответствующих области объемной аморфизации (x = 30 - 70), методом атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой (АЭС-ИСП). Оптимизированы условия работы спектрометра, выбраны аналитические спектральные линии (Cu II 224,700 нм и Zr II 354,262 нм), метод градуировки и способ пробоподготовки — растворение в смеси HNO₃ и HF с добавлением HCl, обеспечивающие наименышее стандартное отклонение аналитического сигнала. Для исследуемых сплавов разработаны также методика определения кислорода методом восстановительного плавления и методика, позволяющая определять медь спектрофотометрическим методом и цирконий — гравиметрически из одной навески и контролировать качество АЭС-ИСП анализа. Результаты анализа образцов сплавов $Cu_{100-x}Zr_x$ по разработанным методикам удовлетворительно согласуются между собой и с учетом поправки на содержание кислорода совпадают в пределах погрешности (не более 0,5 % масс.) с введенным при синтезе содержанием меди и циркония.

Ключевые слова: сплавы медь – цирконий; химический анализ; атомно-эмиссионная спектрометрия с индуктивно-связанной плазмой; гравиметрия; спектрофотометрия; метод восстановительного плавления.

Система $Cu_{100-x}Zr_x$ — одна из наиболее исследуемых среди бинарных металлических систем [1-4]. Эти сплавы привлекают внимание благодаря их способности образовывать (в области x = 30 - 70) объемные металлические стекла, которые демонстрируют отличную коррозионную стойкость и высокую прочность на разрыв, уникальные электрические и магнитные свойства [5, 6]. Металлические стекла могут быть получены в строго определенных узких концентрационных интервалах около 1 % ат. (pinpoint composition). Физическая природа этого явления не вполне понятна [7, 8].

Тот факт, что объемная аморфизация происходит в таких узких интервалах, накладывает жесткие требования на погрешность методик химического анализа, используемых при исследовании зависимости свойств сплавов $Cu_{100-x}Zr_x$ от их состава. В российской и зарубежной литературе не описаны методики анализа подобных систем с x = 30 - 70. Ближайшим аналогом для циркония является комплексонометрический метод его определения с индикатором ксиленоловым оранжевым в медно-циркониевых сплавах с содержанием циркония 1 - 5% масс. [9]. Медь при ее содержании в сплавах от 20 до 80 % масс. определятиет электрогравиметрическим или титриметрическим из видности в лакатором и состава.

ским (йодометрическим) методами [11, 12], методики довольно сложны и времязатратны. Таким образом, разработка методики определения меди и циркония в их бинарных сплавах с погрешностью не более 0,5 % масс. является актуальной задачей. Для ее решения нами был выбран метод атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой (АЭС-ИСП) по причине своей экспрессности, высокой температуры используемого спектрального источника, позволяющей возбуждать атомные и ионные спектры обоих компонентов, хорошей чувствительности, возможности определять оба компонента одновременно. Этот метод обычно применяют для определения циркония и меди в сплавах в пределах 0,001 – 5 % масс. [12, 13]. При подборе адекватного метода подготовки пробы к анализу, метода градуировки, использовании внутренней стандартизации погрешность атомно-эмиссионного определения компонентов сплавов удается значительно снизить [14]. Целью настоящей работы стала оптимизация методики АЭС-ИСП определения меди и циркония в их бинарных сплавах для снижения погрешности до уровня 0,5 % масс. Одной из задач исследования стала разработка альтернативных методик определения меди и циркония для анализа исследуемых образцов и сопоставление полученных результатов.

Объекты исследования, оборудование, материалы. Образцы $Cu_{100-x}Zr_x$ для исследований были синтезированы путем индукционной плавки в атмосфере

¹ Работа выполнена при финансовой поддержке Российского научного фонда (грант № 14-13-00676).

² Институт металлургии УрО РАН, Екатеринбург, Россия.

³ Уральский федеральный университет имени первого Президента России Б. Н. Ельцина, Екатеринбург, Россия; e-mail: pechischeva@gmail.com

очищенного гелия, для этого использовали медь и цирконий чистотой не менее 99,8 % масс. [3].

Атомно-эмиссионное определение компонентов проводили с применением последовательного атомно-эмиссионного спектрометра с индуктивно-связанной плазмой Optima 2100 DV с инжектором из оксида алюминия и распылительной камерой Скотта из пластика (Ryton), устойчивых к воздействию большинства кислот, включая фтороводородную. Для фотометрического определения меди в виде аммиачного комплекса использовали спектрофотометр Leki SS 2109 UV, для гравиметрического определения циркония весы Sartorius CP64. Определение кислорода в образцах проводили методом восстановительного плавления с помощью автоматического анализатора ONH-2000, Eltra.

Йодид циркония по ТУ 95.46–97 и медь марки M01 в виде стружки, смешанные в различных пропорциях, использовали для градуировки АЭС-ИСП спектрометра и спектрофотометра. Для приготовления растворов применяли деионизованную воду (Elga Purelab UHQ) и реактивы квалификации хч и чда.

Определение кислорода методом восстановительного плавления. Образцы непосредственно перед анализом подвергали травлению в течение 1 мин в смеси уксусной, ортофосфорной и азотной кислот в объемном соотношении 6:3:1, затем промывали в дистиллированной воде и этиловом спирте. Порошки анализировали без травления.

Проводили дегазацию графитового тигля, в который предварительно помещали 1,5 г порошка никеля и 0,4 г олова, в течение 60 с при мощности 4,5 кВт. Затем в тигель помещали навеску исследуемого сплава в виде стружки или порошка массой 0,1 - 0,15 г в никелевой капсуле либо компактные образцы массой 0,4 - 0,5 г без капсулы. Программа анализа: стабилизация после дегазации — 60 с; анализ — 30 с при мощности 5,5 кВт в режиме непрерывного нагрева. Определение кислорода проводят по градуировке, построенной с использованием стандартных образцов (циркалой-4, аттестованный на содержание кислорода СRM BCR-276, медь, аттестованная на содержание кислорода ГСО 7973–2001, и др.).

Определение меди и циркония методом АЭС-ИСП. Навеску сплава массой 0,2 - 0,3 г кипятили во фторопластовом стакане в смеси HNO₃ (10 см³) и HF (3 см³), потом добавляли 3 см³ HCl. После полного растворения раствор переносили в полипропиленовую мерную колбу емкостью 250 см³, доводили до метки водой и тщательно перемешивали. Аликвоту полученного раствора (2 см³) помещали в мерную колбу на 200 см³, разбавляли водой до метки и перемешивали. Атомно-эмиссионное определение меди и циркония проводили при следующих условиях: плазмообразующий поток аргона — 15 дм³/мин; вспомогательный поток аргона — 0,2 дм³/мин; поток аргона через распылитель — 0,75 дм³/мин; мощность плазмы — 1400 Вт; расстояние до зоны наблюдения — 17 мм; способ наблюдения — радиальный; регистрация спектра по высоте пика; скорость подачи раствора — 1,5 см³/мин; число измерений прибором сигнала от одной пробы — 2; аналитическая линия циркония — 354,262 нм, меди — 224,700 нм.

Проводили пять параллельных определений меди и циркония по градуировочным зависимостям, построенным с использованием точных навесок стружки чистой меди и циркония, растворенных в тех же условиях. Результаты параллельных определений усредняли.

Гравиметрическое определение циркония и спектрофотометрическое определение меди. Навеску сплава массой 0,2 г помещали во фторопластовый стакан, добавляли 10 см³ HNO₃ и 3 см³ HCl и нагревали практически до полного растворения. Затем добавляли 0,3 см³ НF и завершали растворение. К раствору пробы добавляли 3 г NH₄Cl, перемешивали и осторожно по каплям приливали около 20 см³ водного раствора аммиака до появления сине-фиолетовой окраски аммиачных комплексов меди и образования хлопьевидного белого осадка гидроксида циркония. Для коагуляции осадка полученный раствор нагревали на плите в течение 5 мин, затем остужали до комнатной температуры и давали постоять еще 5 мин, затем фильтровали в колбы объемом 200 см³ через фильтр «синяя лента». К осадку на фильтре последовательно приливали 10 см³ горячего водного раствора аммиака и 5 см³ уксусной кислоты, разбавленной 1:3 (для растворения соосажденного гидроксида меди), затем промывали осадок горячей дистиллированной водой. Осадок на фильтре не должен иметь синего оттенка. Фильтрат оставляли для фотометрического определения меди. Фильтр с осадком помещали в прокаленный и взвешенный фарфоровый тигель, озоляли и прокаливали при температуре 1000 °С в муфельной печи до постоянной массы (40 мин). Тигель остужали и взвешивали, весовая форма (диоксид циркония) содержала 74,03 % масс. циркония.

К фильтрату, оставшемуся в колбе, приливали 5 см³ NH₄OH до восстановления сине-фиолетового окрашивания. Раствор разбавляли дистиллированной водой до метки и перемешивали. Определяли оптическую плотность раствора при 620 нм и концентрацию меди по градуировочному графику. График строят с использованием навесок чистой меди, подвергшихся травлению в течение 1 мин в нагретой до 60 °C смеси уксусной, ортофосфорной и азотной кислот в соотношении 6:3:1. Навески растворяли в 30 см³ водного раствора аммиака, добавляли 3 г NH₄Cl, 5 см³ уксусной кислоты, доводили объем раствора до 200 см³ и перемешивали. При определении циркония и меди проводили пять параллельных определений, результаты которых усредняли.

Выбор метода пробоподготовки к АЭС-ИСП определению. Первым этапом разработки целевой

методики был выбор метода подготовки пробы к атомно-эмиссионному определению компонентов. Для образцов сплавов и искусственных смесей массой 0,25 г с различным содержанием циркония опробовали следующие варианты растворения:

 растворение в смеси азотной и фтороводородной кислот с последующим добавлением хлороводородной кислоты;

 обработка азотной кислотой (для растворения меди) в сочетании с так называемым «мокрым сплавлением» в смеси сульфата аммония и серной кислоты (для растворения циркония) [15];

 растворение в хлороводородной кислоте с доплавлением нерастворившегося остатка в смеси карбоната натрия и тетрабората натрия.

Первый способ оказался самым экспрессным (занимает 5 – 10 мин) и универсальным, градуировки спектрометра, полученные с его использованием, отличаются хорошей чувствительностью и имеют лучший коэффициент корреляции ($r^2 = 0,9999$ в диапазоне концентраций меди и циркония от 2 до 10 мг/дм³). Он и был выбран для разработки методики анализа. Подобрано оптимальное соотношение компонентов смеси, обеспечивающее экспрессное и полное разложения проб сплавов: 10 см³ HNO₃, 3 см³ HF, 3 см³ HCl.

Оптимизация условий АЭС-ИСП определения циркония и меди. При выборе спектральных линий были протестированы линии меди и циркония, имеющиеся в библиотеке спектрометра в диапазоне от 200 до 400 нм. Из них выбрали наиболее интенсивные и симметричные линии, свободные от взаимных наложений: Си I 327,393 нм, Си II 224,700 нм, Си II 213,597 нм, Zr II 343,823 нм, Zr II 339,197 нм, Zr II 257,139 нм, Zr II 354,262 нм. С использованием каждой из них определили компоненты в растворах трех искусственных смесей с отношением меди и циркония 20:80, 50:50 и 80:20 (количество измерений было равно 10) и вычислили соответствующие значения стандартного отклонения. Установлено, что наименьшее относительное стандартное отклонение наблюдается при использовании линий Cu II 224,700 нм и Zr II 354,262 нм (0,7 и 0,8 % соответственно), которые и были выбраны для дальнейшей работы.

В искусственной смеси (0,15 г Си и 0,15 г Zr) определили медь и цирконий при различных операционных условиях: при варьировании мощности индуктивно-связанной плазмы в диапазоне от 1200 до 1500 Вт, потока аргона через распылитель — от 0,65 до 0,95 дм³/мин и высоты зоны наблюдения от 10 до 20 мм. Критерием оптимизации было суммарное относительное стандартное отклонение интенсивности эмиссии меди и циркония (при числе измерений, равном 5). Установлено, что его минимальное значение наблюдается при мощности плазмы 1400 Вт, скорости потока аргона 0,75 дм³/мин, высоте зоны наблюдения 17 мм (рисунок). Эти условия и использовали для дальнейших экспериментов.

Суммарное относительное стандартное отклонение интенсивности эмиссии меди и циркония (Σ OCO) при различных значениях: *а* — мощности индуктивно-связанной плазмы (*1* — 1200 Вт, *2* — 1300 Вт, *3* — 1400 Вт, *4* — 1500 Вт, скорость потока аргона через распылитель $V_{\rm Ar} = 0.8 \, {\rm gm}^3/{\rm мин}; \, \delta$ — скорости потока аргона через распылитель (мощность индуктивно-связанной плазмы — 1400 Вт, высота зоны наблюдения — 17 мм)

Цирконий имеет высокое химическое сродство к кислороду, и поэтому можно было предположить, что сплавы $Cu_{100-x}Zr_x$ содержат некоторое его количество. С использованием разработанной нами методики определения кислорода методом восстановительного плавления в исследуемых сплавах [16] установлено, что при измельчении монолитных образцов сплавов до состояния порошка содержание кислорода увеличивается с 0,015 – 0,02 % масс. до 1,2 – 1,5 % масс. Очевидно, что это обстоятельство необходимо учитывать при определении систематической погрешности АЭС-ИСП анализа на содержание основных компонентов, поскольку измельчение пробы — необходимое условие для его проведения.

В настоящей работе была проведена оценка эффективности применения внутренней стандартизации в целях увеличения точности и воспроизводимости результатов анализа методом АЭС-ИСП [17]. С использованием подхода, описанного в работах [14, 18], и программного комплекса «Тегга», алгоритмы которого изложены в работе [19], теоретически оценили эффективность использования внутренней стандартизации при определении меди и циркония для следующих спектральных линий: Sc II 424,683 нм, Zn II 206,191 нм, Co II 238,892 нм, V II 319,069 нм, Mo II 289,445 нм, Mo II 287,151 нм, Ge II 200,704 нм. Данные элементы и их линии были выбраны по причине близости их потенциалов ионизации и потенциалов возбуждения линий к соответствующим характеристикам аналитов и их линий. По результатам термодинамического моделирования выбрали кобальт и его линию Со II 238. 892 нм.

Результаты экспериментальной проверки эффективности внутренней стандартизации с использованием образца Си_{64.5}Zr_{35.5} представлены в таблице. Можно видеть, что эффекта от применения внутренней стандартизации не наблюдается. Вероятно, это связано с тем, что используемый спектрометр Optima 2100° DV — последовательный, не позволяет проводить истинно одновременное измерение сигналов аналита и внутреннего стандарта и, таким образом, полностью реализовать возможности внутренней стандартизации при компенсации кратковременного дрейфа операционных параметров. Оценка погрешности определения циркония и меди в образце Cu_{64.5}Zr_{35.5}, выполненная без использования внутренней стандартизации, показала, что погрешность не превышает заданного значения — 0,5 % масс., использование внутренней стандартизации в дальнейшем было признано нецелесообразным.

С использованием оптимизированных условий АЭС-ИСП измерений были проанализированы еще три образца сплавов $Cu_{100-x}Zr_x$, состав которых находится в области аморфизации (вблизи «pinpoint composition»): x = 32, 39, 50. Результаты анализа приведены в таблице. Видно, что найденные с использованием разработанной АЭС-ИСП методики средние значения содержания меди и циркония в исследуемых сплавах отличаются от введенных (зашихтованных) содержаний компонентов сплавов с учетом поправки на содержание кислорода не более чем на 0,5 % масс. (в среднем — на 0,2 % масс.). Случайная и суммарная погрешности измерений также не превышают этого значения.

Разработка альтернативной методики определения меди и циркония в бинарных сплавах. Поскольку на российском и зарубежном рынках не существует стандартных образцов состава сплавов Cu_{100-x}Zr_x, для контроля качества результатов их АЭС-ИСП анализа целесообразно применять альтернативные методы. Для разработки соответствующей методики мы использовали свойство аммиака образовывать комплексное соединение с медью и одновременно осаждать цирконий в виде гидроксида. Медь можно определять фотометрически по оптической плотности сине-фиолетового комплекса, а цирконий — гравиметрически, прокалив осадок его гидроксида. Подобные методики применяют для определения циркония и меди в различных объектах по отдельности [15, 20], но при анализе бинарных сплавов Cu-Zn ранее не использовали. Нами была проведена доработка методик, позволив-

Результаты определения меди, циркония и кислорода в сплавах	$Cu_{100-x}Zr_x$	(% масс.)
---	------------------	-----------

Образец	Найдено кислорода	Компонент	Введено	Введено с учетом содержания кислорода	Количество измерений <i>n</i>	Найдено (среднее значение)	Стандарт- ное откло- нение S	Случайная погреш- ность ¹ Д _{сл}	Система- тическая погреш- ность $^{2} \Delta_{cист}$	Суммарная погреш- ность ³ Δ	
Метод атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой											
Cu _{64,5} Zr _{35,5}	0,170	Cu	55,86	55,78	15	56,07	0,47	0,26	0,29	0,39	
, ,					15	55,88 ⁴	0,72	0,40	0,10	0,41	
		Zr	44,14	44,06	15	43,97	0,40	0,22	0,09	0,24	
					15	43,84 ⁴	0,36	0,20	0,22	0,30	
Cu ₅₀ Zr ₅₀	0,208	Cu	41,06	40,97	10	41,34	0,32	0,23	0,37	0,44	
		Zr	58,94	58,82	10	58,91	0,43	0,31	0,09	0,32	
Cu ₆₁ Zr ₃₉	0,032	Cu	52,15	52,13	15	52,01	0,53	0,29	0,12	0,31	
		Zr	47,85	47,84	15	47,66	0,40	0,22	0,18	0,29	
Cu ₆₈ Zr ₃₂	0,058	Cu	59,68	59,65	15	59,70	0,44	0,24	0,05	0,25	
		Zr	40,31	40,29	15	39,87	0,38	0,21	0,42	0,47	
		Альте	рнативнь	ій метод (сп	ектрофотом	иетрия — (Си, гравим	етрия — Zr)			
Cu _{64,5} Zr _{35,5}	0,170	Cu	55,86	55,78	6	56,00	0,49	0,57	0,22	0,61	
		Zr	44,14	44,06	6	43,98	0,40	0,46	0,08	0,46	
Cu ₅₀ Zr ₅₀	0,208	Cu	41,06	40,97	5	41,06	0,28	0,35	0,09	0,36	
		Zr	58,94	58,82	5	58,90	0,31	0,38	0,08	0,39	
Cu ₆₁ Zr ₃₉	0,032	Cu	52,15	52,13	5	51,89	0,24	0,30	0,24	0,38	
		Zr	47,85	47,84	5	47,95	0,28	0,34	0,11	0,36	
Cu ₆₈ Zr ₃₂	0,058	Cu	59,68	59,65	5	60,05	0,34	0,43	0,40	0,59	
		Zr	40,31	40,29	5	40,03	0,30	0,37	0,26	0,45	

¹ Рассчитана как $St_{n,p}/\sqrt{n}$, где $t_{(n;0.95)}$ — коэффициент Стьюдента для соответствующего количества измерений.

² Рассчитана как модуль значения разницы между введенным (с учетом поправки на кислород) и найденным содержанием.

³ Рассчитана как $\sqrt{\Delta_{cл}^2 + \Delta_{сист}^2}$.

⁴ С применением внутренней стандартизации по линии Со II 238,892 (концентрация кобальта в анализируемом растворе — 5 мг/дм³).

шая определять оба элемента сплава из одной навески после кислотного растворения и добавления водного раствора аммиака: раствор комплекса меди и осадок, содержащий цирконий, разделяют фильтрованием, при этом небольшие количества соосаждающегося гидроксида меди отмывают уксусной кислотой и присоединяют к фильтрату, отправляемому на фотометрирование.

Разработанным способом проанализировали те же образцы сплавов, в которых определяли медь и цирконий методом АЭС-ИСП (см. таблицу). Из сравнения результатов видно, что найденные содержания меди и циркония удовлетворительно согласуются между собой и с содержаниями компонентов, введенными при синтезе образцов, в пределах случайной погрешности.

Таким образом, в представленной работе нами впервые была разработана экспрессная методика АЭС-ИСП анализа бинарных сплавов Cu_{100-x}Zr_x с погрешностью не более 0,5 % масс., позволяющая идентифицировать узкие области объемной аморфизации при исследовании зависимостей свойств этих систем от состава. Показано, что содержание кислорода в исследуемых образцах может достигать 1,5 % масс., что делает обязательным его учет при определении химического состава исследуемых сплавов; предложена соответствующая методика определения кислорода. Разработана также методика, позволяющая при необходимости контролировать качество результатов АЭС-ИСП анализа и определять медь спектрофотометрически и цирконий гравиметрически из одной навески. Совпадение результатов, полученных по двум разным методикам, в пределах погрешности свидетельствует об их удовлетворительном качестве.

Авторы признательны Центру коллективного пользования «Урал-М» ИМЕТ УрО РАН за доступ к научному оборудованию и Уральскому федеральному университету (программа 211 Правительства РФ, соглашение № 02.А03.21.0006).

ЛИТЕРАТУРА

- Inoue A., Takeuchi A. Recent development and application products of bulk glassy alloys / Acta Mater. 2011. Vol. 59. N 6. P. 2243 – 2267.
- Wang W. H., Lewandowski J. J., Greer A. L. Understanding the Glass-forming Ability of Cu₅₀Zr₅₀ Alloys in Terms of a Metastable Eutectic / J. Mater. Res. 2005. Vol. 20. N 9. P. 2307 – 2313.
- 3. Uporov S. A., Estemirova S. Kh., Chtchelkatchev N. M., Ryltsev R. E. Anomalous electrical conductivity in rapidly crystallized $Cu_{100-x}Zr_x$ (x = 50 - 66,6) alloys / J. Alloys Comp. 2015. Vol. 647. P. 397 - 401.
- Kulikova T. V., Majorova A. V., Shunyaev K. Yu., Ryltsev R. E. Thermodynamic properties of Cu Zr melts: The role of chemical interaction / Physica B. 2015. Vol. 466 – 467. P. 90 – 95.
- Louzgine-Luzgin D. V., Inoue A. Bulk metallic glasses. Formation, structure, properties and applications / Handbook of magnetic materials. 2013. Vol. 21. P. 131 – 171.
- Inoue A., Zhang W. Formation, thermal stability and mechanical properties of Cu – Zr and Cu – Hf binary glassy alloy rods / Mater. Trans. 2004. Vol. 45. N 2. 584 – 587.
- Wang D., Li Y., Sun B. B., et al. Bulk metallic glass formation in the binary Cu-Zr system / Appl. Phys. Lett. 2004. Vol. 84. N 20. P. 4029 – 4031.

- Yang L., Guo G. Q., Chen L. Y. Atomic-Scale Mechanisms of the Glass-Forming Ability in Metallic Glasses / Phys. Rev. Lett. 2012. Vol. 109. N 10. P. 105502.
- 9. Лукьянов В. Ф., Князева Е. М. Прямое комплексонометрическое определение циркония в медно-циркониевых сплавах / Заводская лаборатория. 1962. Т. 28. № 7. С. 804 805.
- ГОСТ 1652.1–77. Сплавы медно-цинковые. Методы определения меди. — М.: Стандартинформ, 1997. — 12 с.
- ГОСТ 1953.1–79. Бронзы оловянные. Методы определения меди. М.: Стандартинформ, 2002. — 8 с.
- ГОСТ Р 54153–2010. Сталь. Метод атомно-эмиссионного спектрального анализа. — М.: Стандартинформ, 2012. — 32 с.
- Romanova N. B., Pechishcheva N. V., Shunyaev K. Yu., Titov V. I., Gundobin N. V. Determining low concentration of Zr, Ce, La, and Y in heat-resistant nickel alloys by inductively coupled plasma atomic emission / Inorg. Mater. 2012. Vol. 48. N 15. P. 1315 – 1319.
- 14. Майорова А. В., Печищева Н. В., Шуняев К. Ю., Бунаков А. В. Разработка методики ИСП-АЭС определения вольфрама в ферровольфраме с использованием термодинамического моделирования / Аналитика и контроль. 2014. Т. 18. № 2. С. 136 – 149.
- 15. Елинсон С. В., Петров К. И. Аналитическая химия циркония и гафния. М.: Наука, 1965. 240 с.
- 16. СТО 1/2015. Стандарт организации. Методика измерений массовой доли кислорода в сталях, в медно-циркониевых и медно-циркониево-алюминиевых сплавах с применением газоанализатора ELTRA ONH-2000. — Екатеринбург: ИМЕТ УрО РАН, 2015. — 16 с.
- Kucharkowski R., Vogt. C. Simultaneous ICP atomic emission spectrometry for accurate stoichiometric determination: application to a YNi₂B₂C superconducting material system / J. Anal. At. Spectrom. 2002. Vol. 17. N 3. P. 263 – 269.
- Майорова А. В., Воронцова К. А., Печищева Н. В. и др. Разработка методики определения оксида кремния в рудном сырье методом атомно-эмиссионной спектроскопии с индуктивно-связанной плазмой / Заводская лаборатория. Диагностика материалов. 2013. Т. 79. № 12. С. 9 – 15.
- Ватолин Н. А., Моисеев Г. К., Трусов Б. Г. Термодинамическое моделирование в высокотемпературных неорганических системах. — М.: Металлургия, 1994. — 353 с.
- Подчайнова В. Н., Симонова Л. Н. Медь. М.: Наука, 1990. 279 с.

REFERENCES

- Inoue A., Takeuchi A. Recent development and application products of bulk glassy alloys / Acta Mater. 2011. Vol. 59. N 6. P. 2243 – 2267.
- 2. Wang W. H., Lewandowski J. J., Greer A. L. Understanding the Glass-forming Ability of $Cu_{50}Zr_{50}$ Alloys in Terms of a Metastable Eutectic / J. Mater. Res. 2005. Vol. 20. N 9. P. 2307 2313.
- Uporov S. A., Estemirova S. Kh., Chtchelkatchev N. M., Ryltsev R. E. Anomalous electrical conductivity in rapidly crystallized Cu_{100-x}Zr_x (x = 50 – 66,6) alloys / J. Alloys Comp. 2015. Vol. 647. P. 397 – 401.
- Kulikova T. V., Majorova A. V., Shunyaev K. Yu., Ryltsev R. E. Thermodynamic properties of Cu – Zr melts: The role of chemical interaction / Physica B. 2015. Vol. 466 – 467. P. 90 – 95.
- Louzgine-Luzgin D. V., Inoue A. Bulk metallic glasses. Formation, structure, properties and applications / Handbook of magnetic materials. 2013. Vol. 21. P. 131 – 171.
- Inoue A., Zhang W. Formation, thermal stability and mechanical properties of Cu – Zr and Cu – Hf binary glassy alloy rods / Mater. Trans. 2004. Vol. 45. N 2. 584 – 587.
- Wang D., Li Y., Sun B. B., et al. Bulk metallic glass formation in the binary Cu – Zr system / Appl. Phys. Lett. 2004. Vol. 84. N 20. P. 4029 – 4031.
- Yang L., Guo G. Q., Chen L. Y. Atomic-Scale Mechanisms of the Glass-Forming Ability in Metallic Glasses / Phys. Rev. Lett. 2012. Vol. 109. N 10. P. 105502.
- Luk'yanov V. F., Knyazeva E. M. Pryamoe kompleksonometricheskoe opredelenie tsirkoniya v medno-tsirkonievykh splavakh [Direct complexometric determination of zirconium in copper zirconium alloys] / Zavod. Lab. 1962. Vol. 28. N 7. P. 804 – 805 [in Russian].
- RF State Standard GOST 1652.1–77. Splavy medno-tsinkovye. Metody opredeleniya medi [Copper-zinc alloys. Methods for the determination of copper]. — Moscow: Standartinform, 1997. — 12 p. [in Russian].
- RF State Standard GOST 1953.1–79. Bronzy olovyannye. Metody opredeleniya medi [Tin bronze. Methods for the determination of copper]. — Moscow: Standartinform, 2002. — 8 p. [in Russian].

- RF State Standard GOST R 54153–2010. Stal'. Metod atomno-émissionnogo spektral'nogo analiza [Steel. Method of atomic emission spectral analysis]. — Moscow: Standartinform, 2012. — 32 p. [in Russian].
- Romanova N. B., Pechishcheva N. V., Shunyaev K. Yu., Titov V. I., Gundobin N. V. Determining low concentration of Zr, Ce, La, and Y in heat-resistant nickel alloys by inductively coupled plasma atomic emission / Inorg. Mater. 2012. Vol. 48. N 15. P. 1315 – 1319.
- Maiorova A. V., Pechishcheva N. V., Shunyaev K. Yu., Bunakov A. V. Razrabotka metodiki ISP-AÉS opredeleniya vol'frama v ferrovol'frame s ispol'zovaniem termodinamicheskogo modelirovaniya [Development of the tungsten ICP-AES determination in ferrotungsten procedure using thermodynamic modeling] / Analitika Kontrol'. 2014. Vol. 18. N 2. P. 136 – 149 [in Russian].
- Elinson S. V., Petrov K. I. Analiticheskaya khimiya tsirkoniya i gafniya [Analytical chemistry of zirconium and hafnium]. — Moscow: Nauka, 1965. — 240 p. [in Russian].
- Organiztion Standard STO 1/2015. Metodika izmerenii massovoi doli kisloroda v stalyakh, v medno-tsirkonievykh i medno-tsirkonievo-alyuminievykh splavakh s primeneniem gazoanalizatora ELTRA ONH-2000 [Method for determination of mass fraction of oxygen in steel,

copper-zirconium and copper-zirconium-aluminum alloys using a gas analyzer ELTRA ONH-2000]. — Yekaterinburg: Izd. IMET UrO RAN, 2015. — 16 p. [in Russian].

- Kucharkowski R., Vogt. C. Simultaneous ICP atomic emission spectrometry for accurate stoichiometric determination: application to a YNi₂B₂C superconducting material system / J. Anal. At. Spectrom. 2002. Vol. 17. N 3. P. 263 – 269.
- Maiorova A. V., Vorontsova K. A., Pechishcheva N. V., et al. Razrabotka metodiki opredeleniya oksida kremniya v rudnom syr'e metodom atomno-émissionnoi spektroskopii s induktivno-svyazannoi plazmoi [Determination of silica in ore raw materials by atomic emission spectrometry with inductively coupled plasma] / Zavod. Lab. Diagn. Mater. 2013. Vol. 79. N 12. P. 9 – 15 [in Russian].
- Vatolin N. A., Moiseev G. K., Trusov B. G. Termodinamicheskoe modelirovanie v vysokotemperaturnykh neorganicheskikh sistemakh [Thermodynamic modeling in high-temperature inorganic systems]. — Moscow: Metallurgiya, 1994. — 353 p. [in Russian].
- Podchainova V. N., Simonova L. N. Med' [Copper]. Moscow: Nauka, 1990. — 279 p. [in Russian].

УДК 543.55.054.1

ОПРЕДЕЛЕНИЕ МОЛОЧНОЙ КИСЛОТЫ МЕТОДОМ ВОЛЬТАМПЕРОМЕТРИИ

© И. О. Максимчук, Г. Б. Слепченко¹

Статья поступила 12 мая 2015 г.

Разработан способ определения молочной кислоты методом инверсионной вольтамперометрии на ртутно-пленочном и модифицированном стеклоуглеродном электродах. Выбраны условия определения, изучено влияние сопутствующих гидроксикарбоновых кислот на аналитический сигнал молочной кислоты. Предложенный способ применен для определения молочной кислоты в ветеринарных препаратах на ртутно-пленочном электроде, правильность результатов анализа подтверждена методом «введено – найдено». Диапазон определяемых концентраций составляет от 2 до 100 г/дм³.

Ключевые слова: молочная кислота; вольтамперометрия; стеклоуглеродный электрод; ртутнопленочный электрод; модификатор; ветеринарные препараты; методика определения.

Молочная кислота (МК) в некотором количестве всегда присутствует в организме человека, выделяясь при анаэробных нагрузках в клетках мышечных волокон. Повышение концентрации молочной кислоты в крови является индикатором ряда заболеваний. В медицине молочную кислоту применяют в качестве антибактериального агента в борьбе с гемолитическим стафилококком и стрептококком при обработке процедурных кабинетов и палат. В пищевой промышленности МК широко используют как консервант (Е-270) при заготовлении плодов и овощей, для антимикробной обработки при производстве рыбы, мяса и продуктов из них. В пивоваренной отрасли МК применяют для наибольшего извлечения экстрактивных веществ из солода, улучшения органолептических свойств. Она незаменима в кондитерской промышленности и при изготовлении хлеба. В ветеринарии молочную кислоту

используют как основу лекарственных препаратов внутреннего и наружного применения для ухода за крупным рогатым скотом и другими животными, а в сельском хозяйстве — для улучшения вкусовых качеств и питательности заготавливаемых влажных кормов и в качестве альтернативы антибиотикам для обеззараживания кормов, воды и молока для животных.

В связи со столь широким применением молочной кислоты, в том числе и в диагностировании заболеваний, как никогда актуально ее простое, быстрое и экономически выгодное определение в различных объектах. В настоящее время основными методами определения МК являются титриметрический [1], хроматографический [2-4] и метод капиллярного электрофореза [5, 6]. Метод титриметрии основан на косвенном определении и включает в себя выполнение большого количества операций с соблюдением жестких условий. Один из способов хроматографи

¹ Национальный исследовательский Томский политехнический университет, г. Томск, Россия; e-mail: microlab@tpu.ru