УДК 543.427.34:546.66:546.650

ОПРЕДЕЛЕНИЕ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ В МИНЕРАЛАХ ЭНЕРГОДИСПЕРСИОННЫМ РЕНТГЕНОСПЕКТРАЛЬНЫМ МИКРОАНАЛИЗОМ

© Г. Н. Нечелюстов, И. Г. Быстров¹

Статья поступила 12 августа 2016 г.

Изучены метрологические характеристики и сопоставлены результаты электронно-зондового определения состава ряда редкоземельных минералов и синтетических соединений при регистрации рентгеновского излучения методами спектрометрии с волновой (ВДС) и энергетической (ЭДС) дисперсией. Проведенные исследования позволяют сделать заключение об эффективности и достаточной степени надежности микрозондового энергодисперсионного метода при анализе редкоземельных минералов. При определении основных и второстепенных компонентов редкоземельных минералов методы регистрации с помощью ЭДС и ВДС сопоставимы по точности, при определении элементов-примесей (ниже 1 %) метод ЭДС существенно уступает методу ВДС.

Ключевые слова: электронно-зондовый микроанализ; спектрометрия с волновой дисперсией; спектрометрия с энергетической дисперсией; метрологические характеристики; редкоземельные минералы.

В настоящее время известно более 300 минералов, содержащих редкоземельные элементы (РЗЭ). Порядка 80 из этих минералов относятся к собственным, а остальные содержат эти элементы в виде примесей. Все природные соединения РЗЭ разделяют на шесть классов (в порядке распространенности): силикаты, карбонаты, оксиды, фосфаты, фториды и сульфаты. Редкоземельные минералы (ТR-минералы) имеют чрезвычайно сложный состав и представляют собой изоморфные смеси соединений 14 РЗЭ и иттрия. Кроме РЗЭ, в них также могут присутствовать в значительном количестве Na, Ca, Sr, Zr, Ti, P, Si, Th, U и другие элементы. Суммарное содержание РЗЭ в минералах колеблется в широких пределах и может достигать 70 %. Статистические данные о содержании РЗЭ в минералах установили наличие корреляционных связей между близкими по ионному радиусу лантаноидами. При этом в одном минерале, как правило,

селективно совместно накапливаются наиболее близкие по атомному номеру лантаноиды. В соответствии с правилом Оддо – Гаркинса, а также с работой [3], содержание нечетных лантаноидов примерно в 6 раз меньше, чем соседних четных. В зависимости от количественного соотношения отдельных элементов собственные TR-минералы условно делят на три подгруппы: цериевую, иттриевую и комплексную. Наиболее распространенными в природе являются минералы первых двух подгрупп. В цериевой подгруппе преобладают легкие лантаноиды — La, Ce, Pr, Nd, Sm, в иттриевой — иттрий и тяжелые лантаноиды — Dy, Yb, Er, Lu. Минералы комплексной подгруппы в соизмеримых количествах содержат как легкие, так и тяжелые лантаноиды.

Среди аналитических методов, используемых для определения элементного состава TR-минералов, наибольшее распространение получил рентгеноспектральный микрозондовый анализ (PCMA) с применением волнового спектрометра (BДС). В то же время изучение химического состава TR-минералов

¹ Всероссийский научно-исследовательский институт минерального сырья им. Н. М. Федоровского, Москва, Россия; e-mail: bysivg@gmail.com

методом PCMA сопряжено с большими трудностями в связи с многокомпонентностью их состава, что обусловливает высокую плотность рентгеновского спектра и наличие многочисленных перекрываний аналитических линий. Как показывают работы [6, 12 и др.], перспективным направлением в области элементного анализа вещества в микрообъемах является рентгеноспектральный микрозондовый энергодисперсионный метод (ЭДС), который в настоящее время интенсивно развивается.

Сравнение основных характеристик спектрометров разных типов приведено в работе [14], поэтому стоит остановиться лишь на описании основных преимуществ ЭДС по сравнению с кристалл-дифракционной спектрометрией (ВДС), которыми являются:

1) возможность одновременного определения основных компонентов в одном микрообъеме («точке»), что существенно увеличивает производительность анализа и снижает его стоимость;

 возможность использования меньших значений тока электронного пучка, что благоприятно сказывается на результатах анализа термонеустойчивых объектов.

В то же время ЭДС обладает рядом недостатков, среди которых — низкое спектральное разрешение и более низкая чувствительность по сравнению с ВДС.

Приведенное в работе [6] сопоставление полученных с помощью ВДС и ЭДС результатов анализа, показало их высокую воспроизводимость как при определении основных, так и примесных компонентов при исследовании химического состава породообразующих минералов. Опубликован целый ряд работ, посвященных методологии изучения химического состава TR-минералов кристалл-дифракционным методом PCMA [5, 8 и др.]. Методические работы, посвященные изучению TR-минералов методом ЭДанализа, в литературе практически отсутствуют [13]. Опубликованы лишь единичные работы [7, 11] с применением результатов ЭДС-анализа минералов РЗЭ.

В связи с этим целью настоящей работы является оценка возможностей электронно-зондового анализа ряда TR-минералов и синтетических соединений, относящихся к различным типам, при регистрации

Таблица 1. Результаты определения состава TR-соединений с использованием различных ОС

Coorrespondence	00	Содержа	ание, %	_Относительная		
Соединение	0C	Теоретическое	Измеренное	погрешность		
CePO ₄	CeO ₂	59,60	59,95	0,58		
	$CeAl_2$	59,60	57,84	-2,95		
CsCeP ₄ O ₁₂	CeO ₂	23,80	23,82	0,08		
	$CeAl_2$	23,80	23,13	-2,85		
CeS	CeO ₂	81,38	84,08	3,32		
	$CeAl_2$	81,38	83,54	2,65		
CeAl ₂	CeO ₂	72,19	75,52	4,61		

рентгеновского излучения методом ЭДС. Для решения этой задачи рассмотрены следующие вопросы:

1) выбор образцов сравнения (ОС);

 оценка эффекта наложения линий спектра на аналитическую линию;

 сопоставление результатов определения состава ТR-минералов при регистрации рентгеновского излучения методами ВДС и ЭДС;

4) метрологическая оценка результатов измерений.

Методика исследования. В работе использовали автоматизированный микроанализатор (микрозонд) Jeol JXA-8100, оснащенный тремя кристалл-дифракционными спектрометрами и ЭД-спектрометром, и рентгеновский микроанализатор JCXA-733 Superprobe (Япония). ВД-анализ проводили при ускоряющем напряжении 20 кВ и токе зонда 20 нА с программным обеспечением (ПО), позволяющим рассчитывать содержание элементов методом ZAF-коррекции и определять интенсивность фона с учетом эффекта наложения линий [1].

Разработанная в ФБГУ «ВИМС им. Н. М. Федоровского» методика была использована для изучения химического состава ТR-минералов в различных типах месторождений [2, 10 и др.]. В процессе изучения месторождений РЗЭ для ряда TR-минералов, относящихся к различным типам соединений, были отобраны минеральные фракции, из которых по общепринятой методике [6, 9] изготавливали препараты для рентгеноспектрального микроанализа. В дальнейшем именно эти образцы послужили основой для настоящей работы.

ЭДС представлен системой Link Pentafet с ПО INCA Energy 400 (Oxford Inst., Великобритания). Разрешение Si-Li-детектора на линии MnKα составляет 133 эВ. Угол отбора излучения равен 45°. ЭД-анализ проводили при ускоряющем напряжении 20 кВ и токе зонда 3 нА. «Живое» время набора спектра — 60 с; для уточнения содержания примесных компонентов — 100 с. «Мертвое» время составляет порядка 20 – 25 %. Режим обработки импульсов аналого-цифровым преобразователем — Process Time 5. Поправки на матричный эффект рассчитывали методом ZAFкоррекции с помощью ПО.

В качестве ОС при анализе TR-минералов могут служить только однометалльные (по содержанию других TR) синтезированные соединения. Определение TR-соединений в разных ОС показало, что использование интерметаллических соединений (LaB₆, CeAl₂ и др.) приводит к значительным погрешностям, которые обусловлены высокими поправками на матричные эффекты (табл. 1). При использовании простых фторидов типа TRF₃ в качестве ОС содержание тяжелых P3Э оказывается завышенным (табл. 2). Из табл. 2 видно, что между теоретическими значениями и экспериментальными данными выявляется систематическая погрешность, выраженная увеличением содержания элемента, что, вероятно, обусловлено недостаточной термоустойчивостью простых фторидов РЗЭ. Имеющиеся у авторов синтезированные фосфаты тяжелых лантаноидов неоднородны из-за примеси свинца из стекол-подложек для синтеза. Синтезированные многометалльные соединения также не гомогенны.

Для тяжелых лантаноидов в качестве ОС использовали простые оксиды, для легких — ортофосфаты. Используемый при выполнении измерений набор ОС приведен в табл. 3, наличие примесных компонентов в соединениях контролировали методом атомно-эмиссионного анализа с лазерным пробоотбором (лазерный микроанализатор ЛМА-10, генератор «Шаровая молния», спектрограф ПГС-2 с многоканальным анализатором эмиссионных спектров на основе линеек фотодиодов).

Оценка эффекта наложения линий спектра. РЗЭ располагаются в Периодической системе элементов между Ва (Z = 56) и Hf (Z = 72). В интервале этих атомных номеров $L\beta$ -пик элемента Z-2 сильно перекрывается с пиком элемента Z La (например, LaL β с PrLa, LaL β с NdLa). Особенно велико взаимное наложение пиков в начале интервала, где разница энергий между La-пиком элемента Z и L β -пиком элемента Z-2 не превышает 50 эВ. Как видно из табл. 4, применяемый детектор и используемое ПО позволяют разрешить взаимное наложение пиков, когда интервал между линиями менее 200 эВ, увеличивает сумму найденных со-

держаний, но при этом не влияет на точность определения основных компонентов.

Перечень таких линий при ВД-анализе TR-минералов описан в работе [5], там же приведен способ их учета. Энергии серий спектра в основном приведены в доступных таблицах. Эти данные позволяют качественно оценить степень наложения линий, исходя из разрешения спектрометра.

Как уже отмечалось, содержание нечетных лантаноидов обычно в 5 – 7 раз ниже, чем четных. В соответствии с этим при анализе минералов цериевой подгруппы возникают сложности с определением празеодима. Проблема заключается в измерении пика небольших концентраций (1 – 3 %) в окрестностях главных пиков основных элементов — La, Ce и Nd. Экспериментальные данные по оценке эффективности учета для этого случая наложений линий приведены в табл. 5.

Как видно из табл. 5, значение погрешности и воспроизводимости определения Pr_2O_3 в соединениях, содержащих и не содержащих мешающие элементы, близки между собой.

В низкоэнергетической области рентгеновского спектра линии K и L разнятся по энергии настолько незначительно, что пики практически не разрешаются. Примером может служить взаимное влияние YL и PK-линий. В непосредственной близости к пикам иттрия и фосфора лежат пики Si и Zr. Все эти элементы в том или ином количестве могут присутствовать в

Таблица 2. Результаты определения тяжелых РЗЭ с использованием образцов сравнения TRF₃

, ,	1			1	· 1	5			
Соединение		HoPO ₄	ErPO ₄	TmPO ₄	YbPO ₄	LuPO ₄	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃
Определяемый з	лемент	Но	Er	Tm	Yb	Lu	Но	Er	Tm
Содержание, % Теоретическое		63,46	63,78	64,01	64,60	64,82	87,30	87,45	87,56
	Измеренное	65,39	64,84	66,66	65,84	69,21	89,94	90,32	91,48
Относительная п	тогрешность	-4,6	-1,7	-4,1	-1,9	-6,8	-3.0	-3,3	-4,5

Таблица 3. Синтезированные соединения, используемые в качестве ОС, и статистические параметры (N = 15), характеризующие их гомогенность (разброс результатов анализов в случайных точках)

Определяемый элемент	Образец сравнения	Содер: компоне	жание нтов, %	ZAF-поправка	S	S_r	Относительная систематическая составляющая погрешности <i>d_r</i>
Y	Y_2O_3	Y ₂ O ₃	100	0,9347	0,47	0,59	0,05
La	LaPO ₄	La ₂ O ₃ 69,7	P ₂ O ₅ 30,4	0,8585	0,54	0,90	-0,02
Ce	CePO ₄	CeO ₃ 69,8	P ₂ O ₅ 30,2	0,8617	0,39	0,64	-0,35
Pr	PrPO ₄	Pr ₂ O ₃ 69,9	P ₂ O ₅ 30,1	0,8657	0,33	0,56	-0,08
Nd	NdPO ₄	Nd ₂ O ₃ 70,3	P ₂ O ₅ 29,7	0,8626	0,39	0,66	-0,12
Sm	$SmPO_4$	Sm ₂ O ₃ 71,1	P ₂ O ₅ 28,9	0,8578	0,33	0,56	0,12
Eu	EuPO ₄	Eu ₂ O ₃ 71,3	P ₂ O ₅ 28,7	0,8589	0,38	0,64	-0,08
Gd	GdPO ₄	Gd ₂ O ₃ 71,9	P ₂ O ₅ 28,1	0,8512	0,50	0,80	-0,02
Tb	TbPO ₄	Tb ₂ O ₃ 72,0	P ₂ O ₅ 28,0	0,8520	0,53	0,86	0,05
Dy	Dy_2O_3	Dy ₂ O	Dy ₂ O ₃ 100		0,72	0,82	-0,05
Но	Ho ₂ O ₃	Ho ₂ O	₃ 100	0,9375	0,41	0,45	0,03
Er	Er_2O_3	Er_2O_2	3 100	0,9377	0,91	1,01	-0,06
Tm	Tm_2O_3	Tm ₂ O	₃ 100	0,9381	0,59	0,85	-0,07
Yb	Yb_2O_3	Yb ₂ O	₃ 100	0,9368	0,60	0,64	0,04
Lu	Lu_2O_3	Lu ₂ O	₃ 100	0,9392	0,66	0,63	-0,08

Тип соеди-								Компс	онент							
нения	La_2O_3	Ce_2O_3	Pr_2O_3	Nd_2O_3	$\mathrm{Sm}_2\mathrm{O}_3$	Eu_2O_3	Gd_2O_3	Tb_2O_3	Dy_2O_3	Ho_2O_3	$\mathrm{Er}_{2}\mathrm{O}_{3}$	Tm_2O_3	Yb_2O_3	Lu_2O_3	P_2O_5	Сумма
$LaPO_4$	69,4/1,7					0,2/1,2	0,6/1,3	0, 4/1, 1	0,5/0,9		I	0, 1/0, 7			30, 3/1, 8	101,6
$CePO_4$	0, 3/1, 1	69,5/1,9			0,5/1,3	0,9/1,2	0,7/1,3							0,1/0,7	30,0/1,8	102.0
$PrPO_4$			69, 4/1, 9	0, 3/1, 2			0, 1/1, 5	0,5/1,3	0, 2/1, 1			0, 2/1, 0			29,9/1,9	100,6
$NdPO_4$				69, 4/1, 5	1,0/1,5	0,6/1,6	0,5/1,6	0,6/1,4	0, 1/1, 1						29,6/1,9	101,9
SmPO_4	0,1/0,7		0, 1/1, 0	0,2/0,8	71,0/1,9		0, 1/1, 7	0, 2/1, 6	1,0/1,3		0, 1/0, 9				28, 8/1, 9	101, 7
$EuPO_4$	0,2/0,7	0,4/0,9	0,4/0,9	0,2/0,8		71,2/2,1									28,7/1,8	101,1
$GdPO_4$		0, 1/0, 9	0, 1/0, 9		0, 3/1, 0		71,7/2,1								28,0/1,9	100,2
$TbPO_4$	0,2/0,9				0,5/1,1		0,6/1,9	71,7/2,8							27,9/1,3	100,8
Dy_2O_3		0, 2/1, 0							99,9/2,7		0, 1/1, 1					100,2
Ho_2O_3			0,1/0,7	0,1/0,7	0, 1/0, 8	0, 2/1, 0	0, 1/1, 0	0,2/0,9	0,5/1,2	99,6/1,8		0, 2/1, 0	0, 2/1, 3			101,2
$\mathrm{Er}_2\mathrm{O}_3$			0,1/0,7	0,2/0,7					0, 1/1, 0		99,6/1,9		0,7/1,1	0,9/1,3		101,6
Tm_2O_3		0, 3/1, 5										99,8/4,0				100,2
Yb_2O_3			0,1/0,7	0,5/0,7	0,4/0,8	0, 2/1, 0							99,7/2,0			100,9
Lu_2O_3			0, 2/1, 1	0,5/1,1	0, 2/1, 4	0, 6/1, 5	0,6/1,5	0, 3/1, 4	0, 2/1, 5	0,5/1,1				99,2/3,4		102,2
Примечан более $n \cdot 10^{-10}$	ие. В числ) ⁻³ %.	ителе прив	едены знач	(%) ю кинэ1), в знамена	теле — 2σ.	По данным	иргиред	ĮМЕТ обще	е содержан	ние примес	ей в образц	ах — не бо	лее 0,2 %,	а соседних]	93Э — не

TR-фосфатах. В табл. 6 приведены данные, показывающие роль мешающих элементов при анализе синтезированного соединения YPO₄.

Анализ табл. 6 показывает, что перекрывания *К*-линии Si и *L*-линий Zr и Sr с пиками Y и P мало, хотя их энергии близки. Обращает на себя внимание также и тот факт, что включение в число определяемых элементов Ir существенно влияет на качество анализа. В то же время наличие или отсутствие Ir легко установить при анализе *L*-серии этого элемента.

При количественном анализе минералов TR-элементов большие трудности возникают при определении легких элементов в интервале атомных номеров от Z = 11 до Z = 13. Это обусловлено присутствием в спектре линий *M*-серии РЗЭ. В ряде случаев взаимное наложение пиков настолько велико, что детектор практически не разделяет указанные элементы. Следует отметить, что интенсивность линий *M*-серии TR-элементов растет постепенно по мере заполнения 4*f*-оболочки. Начиная с Gd, влияние *M*-серии TR-элементов на точность анализа становится заметным.

При изучении спектров простых оксидов РЗЭ $(Dy_2O_3, Ho_2O_3, Er_2O_3 и др.)$ были установлены относительно интенсивные линии в области низких энергий, соответствующие по положению M_z -линиям этих элементов (переход электрона, связанный с образованием вакансии в M_5 -оболочке, с N_3 -оболочки в результате ионизации; линия M_5N_3 по номенклатуре IUPAC, $M\zeta$ — по номенклатуре Зигбана). Их интенсивности значительно выше значений, опубликованных в справочных изданиях, и близки к приведенным в работе [13]. Отношение интенсивностей $DyMz/DyM\alpha$, β в Dy_2O_3 составляет примерно 0,15 – 0,20.

Поэтому при определении Na, Mg, Al в TR-минералах необходимо локализовывать влияние мешающего элемента путем удаления из спектра соответствующей линии *M*-серии TR-элемента. В ПО INCA это делается автоматически при обработке спектра. Эффективность данной процедуры иллюстрируют результаты анализа различных по составу синтезированных соединений (табл. 7). Данные таблицы показывают очень большую степень перекрытия пиков Ho*Mz* и Na*K*, а также Tb*M* α и Mg*K* и Tm*M* α и Al*K*, т.е. с нечетными лантаноидами, содержание которых в минерале, как указывалось, в 5–7 раз ниже, чем содержание четных (1–3%). Поэтому их влияние на качество анализа минимально.

Метрологическая оценка. Метрологическая оценка правильности определения элементов в минералах из-за специфики микрозондового метода сопряжена с большими трудностями, главной из которых является отсутствие СО с точно установленным составом и однородных на уровне локальности зонда. Многие синтетические соединения многофазны, в них часто устанавливается концентрационное перераспределение отдельных компонентов. Природные минералы также не всегда соответствуют требованиям как с точ-

Таблица 4. Усредненные (N = 12) результаты анализа синтезированных ТR-соединений ЭД-методом

ки зрения их гомогенности, так и по уровню содержания компонентов. Поэтому провести метрологическую оценку правильности результатов в соответствии с требованиями ОСТ 41-08-205-04 в настоящее время весьма затруднительно.

Эту задачу в основном решают качественно с помощью нескольких критериев, основными из которых являются:

близость суммы содержаний определяемых компонентов к 100 %;

сравнение суммарного содержания TR-элементов по результатам PCMA и химического анализа;

пересчет результатов PCMA минералов на кристаллохимическую формулу и анализ значений коэффициентов для элементов, находящихся в изоморфных замещениях;

сопоставление результатов анализа с данными других методов.

Эффективность оценки по каждому из указанных критериев различна и зависит от анализируемого ми-

нерала. Одного критерия, как правило, бывает недостаточно для оценки достоверности анализа.

Обычно критерием оценки качества результатов «микрозондового» анализа принято считать близость суммы содержаний определяемых компонентов к 100 % и отсутствие явных погрешностей в кристаллохимической формуле минерала. Однако близость суммы к 100 % еще не свидетельствует о точности полученных данных. Завышение содержания одного или нескольких элементов по сравнению с истинным может нивелироваться занижением содержания других. Кроме того, минералы всегда содержат неопределяемый элемент. В большинстве случаев это кислород, но могут быть и другие элементы: бериллий, бор, углерод и ОН-группа. Если неопределяемым элементом является кислород, то его содержание, необходимое для ZAF-коррекции, рассчитывают по стандартной методике в соответствии со стехиометрией соединения. В случае если минерал помимо кислорода содержит другие неопределяемые компоненты,

Таблица 5. Результаты и воспроизводимость определения Pr₂O₃ в различных минералах и синтезированных соединениях

Минерал	Содерж	ание мешающих элем	ентов, %	Содержан	ие Pr ₂ O ₃ , %	C %	Воспроиз-
(соединение)	$LaL\beta \Delta E = 8 \Im B$	$CeL\alpha \Delta E = 194 \Im B$	$NdL\alpha \Delta E = 174 \Im B$	ЭДС	ВДС	- C _{OTH} ., 70	водимость
Флюоцерит	15,8	36,5	9,6	3,82	3,7	3,24	12,36
Бастнезит	27,4	35,5	6,4	2,18	2,4	9,17	11,87
Монацит-алдан	16,4	29,6	8,6	2,69	2,6	3,46	19,71
Стилвеллит	21,7	31,3	5,6	1,81	2,08	12,98	18,96
Гагаринит	2,0	6,6	1,0	5,6	5,3	5,66	11,64
Y _{2,95} Pr _{0,05} Al ₅ O ₁₂		—	—	1,31	1,38	5,07	16,51
Y _{2,85} Pr _{0,15} Al ₅ O ₁₂		—		4,4	4,11	7,06	12,17

Таблица 6. Результаты анализа синтезированного соединения УРО₄ (%)

Определяемые элементы	Si	Р	Sr	Y	Zr	Ir
Y, P		16,48		48,28		
Y, P, Si	0,01	16,47	_	48,28		_
Y, P, Zr		16,82	_	48,02	0,07	_
Y, P, Sr		16,48	0,12	48,33		_
Y, P, Ir		17,08	_	48,59		0,00
Y, P, Zr, Si, Sr	0,03	17,38	0,62	47,35	0,00	_
Y, P, Zr, Si, Sr, Ir	0,01	19,34	0,49	48,47	0,02	0,06
Теоретический состав		16,80		48,32		

Таблица 7. Результаты оценки наложения линий TR-элементов M-серии на NaKa, MgKa и AlKa

Соединение	Определяемый элемент	Мешающая линия	Содержание мешающего элемента, %	Разница энергий, эВ	«Намеряемое» содержание, %	σ
Dy ₂ O ₃	Na	Dy <i>Mz</i>	87,13	44	0,82	0,44
Ho ₂ O ₃	Na	HoMz	87,30	-4	1,06	0,45
Er_2O_3	Na	Er <i>Mz</i>	87,45	-49	0,44	0,43
HoPO ₄	Na	HoMz	63,46	-4	0,82	0,41
TbPO ₄	Mg	TbMα	62,59	13	0,85	0,49
$Tb_3Fe_5O_{12}$	Mg	TbMα	50,32	13	1,10	0,30
TmPO ₄	Al	TmMα	64,01	24	2,82	0,47
TmP_3O_{12}	Al	TmMα	41,65	24	1,98	0,38
ErPO ₄	Al	ErMα	63,78	81	0,54	0,26

в качестве неопределяемого элемента берут кислород, и нормировку проводят по разности от 100 %. Основанием такой замены является близость этих элементов по атомному номеру и абсорбционным характеристикам к кислороду.

Оценка правильности анализа по степени соответствия рассчитанных кристаллохимических формул истинному составу минерала часто затруднена из-за введения ограничительных условий об обязательном равенстве числа катионов или анионов какому-то заранее определенному значению. Как указано в работе [4], результаты расчета коэффициентов в формуле минерала разными способами (кислородный метод, расчет по количеству катионов, расчет по содержимому элементарной ячейки) оказываются достаточно близкими. При этом каждая из полученных формул имеет определенные особенности, обусловленные заранее принимаемыми постулатами о равенстве коэффициентов кислорода или каких-либо катионов принятому целому числу, которое соответствует взглядам исследователя на природу минерала. Из всех вычислений только при расчете по содержимому элементарной ячейки (метод Хея – Штрунца) нет никаких субъективных допущений. Однако для применения этого метода необходимо измерить плотность анализируемого зерна, которая редко отвечает теоретической (плотность и химический состав находятся в соответствии), что трудно реализуемо с учетом локальности PCMA.

Сравнительные результаты определения РЗЭ на примере образцов TR-флюоритов, взятых из одной навески и проанализированных различными методами (спектральным — из предварительно выделенного химическим методом осадка (СП 1) и непосредственно из навески (СП 2); рентгеноспектральным флуоресцентным (РСФА); химическим (Хим) и РСМА), приведено в табл. 8.

Результаты СП анализа из выделенного осадка были откорректированы путем приведения суммарного содержания РЗЭ к 100 %, а затем пересчитаны на исходную навеску, исходя из суммарного содержания РЗЭ, полученного химическим методом. Общее суммарное содержание РЗЭ равно сумме содержаний найденных и необнаруженных РСМА элементов (Eu, Tm, Tb, Lu — по данным СП или РСФА). Общее суммарное содержание для СП и РСФА получено прибавлением к общему суммарному содержанию РЗЭ данных химического метода, а Y для РСФА — по данным СП.

Из табл. 8 следует, что общие суммарные содержания всех элементов, определенные ВДС и химическим методами, удовлетворительно согласуются. Результаты раздельного РСМА определения РЗЭ хорошо согласуются с данными откорректированного СП. Данные СП 2 соответствуют результатам РСМА за исключением Y и, в ряде случаев, La и Ce. Cono-

Таблица 8. Результаты определения РЗЭ в TR-флюорите различными методами

Номер	Вид					3	Элемент,	%					Сумма Т	R, %
образца	анализа	Y	La	Ce	Pr	Nd	Sm	Gd	Dy	Но	Er	Yb	По анализу	Общая
1	ЭДС	2,5	0,4	0,9	0,1	0,6	0,1	0,2	0,4	0,1	0,2	0,6	6,1	
	ВДС	2,6	0,4	1,0	0,1	0,6	0,3	0,7	0,5	0,1	0,4	0,4	7,1	7,4
	Хим													6,7
	СП 1	3,0	0,3	1,0	0,1	0,5	0,2	0,3	0,3	0,1	0,3	0,3	6,4	—
	РСФА		0,4	1,0	0,2	0,7	0,4	0,7	0,8	0,4	0,6	1,1	6,4	6,9
2	ЭДС	6,0	0,9	2,3	0,3	1,4	0,4	0,6	1,3	0,2	0,6	0,6	14,6	
	ВДС	6,1	1,0	2,3	0,3	1,3	0,5	0,6	1,2	0,2	0,8	0,8	15,1	15,4
	Хим	—	—	—	—	—	—	—	—	—	_	—		14,6
	СП 1	6,3	0,9	2,1	0,2	1,2	0,5	0,6	1,0	0,3	0,6	0,7	14,4	—
	СП 2	4,7	1,3	2,6	0,4	1,2	0,5	0,6	1,0	0,2	0,7	0,7	13,9	
3	ЭДС	7,8	0,8	1,8	0,2	1,2	0,3	0,5	1,4	0,2	0,9	1,4	16,5	
	ВДС	8,0	0,9	1,7	0,2	1,0	0,3	0,7	1,4	0,2	1,4	1,6	17,4	18,1
	Хим		—		—					—				18,5
	СП 1	8,8	1,1	2,2	0,2	1,3	0,8	0,6	1,3	0,3	0,2	1,2	18,0	
4	ЭДС	17,2	0,8	2,0	0,3	1,0	0,6	1,2	2,6	0,4	1,3	1,4	28,8	
	ВДС	17,2	0,8	2,0	0,3	1,2	0,7	1,4	2,8	0,4	1,5	1,1	29,4	30,1
	Хим		_				—	—		_				31,2
	СП 1	19,9	0,9	2,3	0,3	0,9	0,8	1,4	1,8	0,7	0,1	0,5	30,5	
	СП 2	12,9	1,3	2,4	0,5	1,7	0,8	1,4	1,9	0,3	1,0	0,5	24,7	
	РСФА		0,9	2,2	0,4	1,4	1,6	5,1	5,5	2,3	3,2	2,5	25,1	26,9
5	ЭДС	9,7	5,2	12,2	1,5	5,1	1,1	1,0	1,2	0,4	1,3	1,1	39,8	—
	ВДС	9,8	5,3	12,1	1,4	5,1	1,2	1,3	1,2	0,4	1,5	1,0	40,3	41,0
	Хим													41,8
	СП 1	9,7	5,4	12,1	1,2	5,8	1,6	1,7	1,1	0,6	1,1	0,9	41,2	—
	СП 2	6,8	4,9	10,4	1,9	5,4	1,4	1,6	1,3	0,3	0,8	1,0	35,8	

ставление данных РСМА и РСФА показывает удовлетворительную воспроизводимость результатов определения элементов цериевой группы от La до Sm и существенные расхождения в определении тяжелых лантаноидов от Gd до Yb. Различие суммарных содержаний РЗЭ по данным РСФА и химического метода свидетельствует о том, что РСМА дает более корректные результаты. В связи с этим метрологическую оценку данных, полученных методом ЭДС, проводили в сравнении с аналитическими данными волновой спектрометрии.

В аналитической химии о возможности и границе применимости того или иного метода судят по таким метрологическим характеристикам, как правильность, прецизионность и воспроизводимость анализа, предел обнаружения, а для микрозондового метода — еще и аналитическая чувствительность по неоднородности. Последняя является важной метрологической характеристикой РСМА, так как позволяет ответить на вопрос, является ли полученная разность концентраций следствием реальной неоднородности образца или погрешности измерений.

Оценку воспроизводимости, а вместе с тем и однородности распределения компонентов в минерале, проводили путем многократного определения состава в разных участках минерала в разное время. По результатам измерений рассчитывали относитель-

Таблица 9. Результаты анализа (%) некоторых TR-минералов ЭД (знаменатель) и ВД (числитель) методами

Минерал		P_2O_5	SiO ₂	ThO ₂	Y ₂ O ₃	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd ₂ O ₃	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Dy ₂ O ₃	CaO
Монацит	CB-1	28,4	2,7	0,6	0,8	2,8	15,5	3,4	26,9	11,3	1,5	4,0	0,5	0,2
		27,7	1,5	1,8	0,4	2,5	15,2	3,6	26,3	13,5	1,2	4,4	0,7	0,2
	CB-2	28,3	0,5	0,8	0,6	4,1	21,0	3,9	24,5	8,3	1,5	3,2	0,5	0,2
		27,4	0,6	2,4	0,6	3,7	20,5	3,7	23,9	9,8	1,1	3,0	0,5	0,1
	CB-4	29,7	0,2	0,1	0,5	6,2	27,1	4,3	21,1	5,8	1,0	2,7	0,4	0,2
		29,4	0,3	0,9	0,3	6,5	28,1	4,1	20,4	5,3	0,7	2,5	0,5	0,1
	CB-5	30,6	1,1	0,3	0,7	13,6	33,5	3,6	12,9	1,7	0,6	1,0	0,4	0,1
		29,4	0,6	0,1	0,3	13,3	33,8	3,2	12,5	1,3	0,8	1,5	0,6	0,2
	115	27,3	1,7	13,4	2,0	7,9	21,0	2,6	10,9	5,8	н/о	3,6	н/о	1,4
		27,1	1,7	15,2	1,4	8,8	21,8	2,9	10,8	5,9	н/о	3,4	н/о	1,4
	Алдан	26,8	2,1	8,9	0,4	6,4	29,6	2,6	8,6	1,0	н/о	0,6	н/о	0,9
		27,6	1,9	8,2	0,9	7,6	30,6	2,7	9,0	0,8	н/о	0,3	н/о	1,0
		Y.O.	La ₂ O ₂	Ce ₂ O ₂	Pr _a O _a	Nd ₂ O ₂	Sm ₂ O ₂	GdaOa	ThO	SiO	CaO	Неопре	д. эл-ты	
		1203	20203	00203	11203	114203	511203	04203	1110-2	510-2	CaO	B_2O_3	F+CO3	
Стилвеллит		<0,07	21,7	31,3	2,1	5,6	0,4	0,2	0,5	23,3	<0,06	13,5		
		н/о	21,9	30,8	1,8	5,6	0,2	н/о	0,7	24,2	н/о	14,0		
Бастензит	К-1	н/о	27,4	35,1	2,4	6,4	<0,1	<0,1	1,6	<0,06	0,1		27,9	
		н/о	27,3	35,0	2,1	6,7	н/о	н/о	1,3	н/о	0,1		27,7	
	К-2	н/о	21,2	35,5	3,2	11,4	0,9	0,3	<0,09	<0,06	<0,06		27,6	
		н/о	21,7	35,7	2,8	11,3	1,0	н/о	н/о	н/о	н/о		27,7	
	К-3	н/о	22,4	35,5	2,8	10,1	0,6	0,3	0,1	<0,06	<0,06		27,7	
		н/о	22,7	36,0	3,0	10,5	0,2	н/о	н/о	н/о	н/о		27,8	
	К-4	н/о	19,3	30,7	2,8	9,0	0,5	0,2	н/о	н/о	6,8		31,6	
		н/о	19,4	31,2	2,5	9,3	н/о	н/о	н/о	н/о	7,0		31,9	
		La_2O_3	Ce ₂ O ₃	Pr_2O_3	Nd_2O_3	$\mathrm{Sm_2O_3}$	Gd_2O_3	ThO_2	SrO	Na ₂ O	TiO ₂	Nb_2O_5	FeO	CaO
Лопарит	К-1	8,3	17,0	1,6	4,3	0,1	0,1	0,8	3,4	9,3	40,2	8,8	0,3	4,6
		8,1	16,4	1,4	4,3	н/о	н/о	0,8	3,5	9,4	41,3	9,0	0,3	4,7
	O-23	8,4	17,1	1,4	4,6	0,2	н/о	0,9	3,4	9,2	40,2	8,9	0,3	4,6
		8,5	16,8	1,2	4,3	н/о	н/о	1,2	3,4	8,7	40,8	8,8	0,3	4,6
		Y	La	Ce	Pr	Nd	Sm	Gd	Dy	Th	Ca	Si	F _{reop}	
Флюоцерит	1	1,0	14,7	36,8	3,7	10,2	1,6	1,0	0,6	0,3	0,2	<0,06	29,0	
		0,7	14,7	37,5	4,1	10,9	1,2	н/о	н/о	1,2	0,3	н/о		
	2	1,1	15,8	36,5	3,7	9,6	1,7	1,0	0,5	0,4	0,2	н/о		
		0,7	16,3	37,3	3,8	10,6	1,5	0,7	н/о	1,1	0,2	н/о		
		Y	La	Ce	Pr	Nd	Sm	Gd	Dy	Но	Er	Yb	Ca	Na
Гагаринит	159	14,8	2,0	6,6	1,0	5,3	2,0	2,9	3,4	0,6	1,7	1,1	11,9	7,0
-		14,3	2,0	6,8	1,0	5,6	2,18	2,88	3,55	0,56	1,68	1,0	11,9	7,2
	32/172	19,2	1,2	3,8	0,4	2,5	0,7	2,2	3,4	0,4	2,5	2,5	12,6	7,2
		19,8	1,1	3,2	0,4	2,3	1,0	2,0	4,1	0,7	2,9	1,6	12,2	6,8
Примечани	е. "н/о" -	— не обі	наружен.											

ное среднеквадратическое (стандартное) отклонение *S_r* по следующим формулам:

$$S = \sqrt{\frac{1}{m-1} \sum_{i=1}^{m} d_i^2},$$
 (1)

$$S_r = S \cdot 100/C, \tag{2}$$

$$d_i = C_i - C, \tag{3}$$

где C_i — *i*-й результат анализа (1, 2, ..., *m*); $C = \frac{1}{m} \sum_{i=1}^{m} C_i$ — средний результат анализа; *S* — среднеквадратическое (стандартное) отклонение случайной погрешности; *S_r* — относительное среднеквадратическое (стандартное) отклонение случайной погрешности.

Правильность результатов анализа характеризуется отклонением средней концентрации элемента от его истинного содержания в образце, т.е. отражает близость к нулю систематической погрешности. В электронно-зондовом микроанализе систематические погрешности можно разделить на две группы. К первой группе относятся погрешности, связанные

Таблица 10. Численные значения метрологических характеристик результатов ЭД-анализа TR-минералов

Variation	Интервал			Метрологическа	я характеристика	рактеристика					
KOMHOHEHT	содержаний, %	N	S	S_r	d_r	t ₃	$t_{ m T}$				
Y	0,5 - 1,9	18	0,16	8,92	6,57	3,04	2,12				
	40,0-59,9	7	0,63	1,21	-0,53	1,15	2,45				
	60,0 - 70,0	17	0,64	0,82	1,23	1,17	2,12				
La	0,5 - 1,9	18	0,58	30,75	-6,47	0,87	2,12				
	2,0-9,9	7	0,21	2,51	4,56	2,06	2,45				
	10,0 - 19,9	16	0,56	3,41	3,59	4,46	2,11				
	20,0-29,9	19	0,32	1,48	0,63	2,01	2,09				
Ce	0,5 - 9,9	18	0,29	3,57	3,02	3,48	2,12				
	10,0-19,9	12	0,22	1,36	-3,24	3,25	2,20				
	20,0-29,9	9	0,42	1,53	-1,87	3,85	2,26				
	30,0 - 39,9	6	0,48	1,35	-0,24	0,43	2,57				
Pr	0,5 – 1,9	12	0,31	22,38	-12,50	1,93	2,20				
	2,0-5,0	16	0,47	12,36	3,30	1,13	2,11				
	20,0-29,9	18	0,42	1,98	-1,17	2,44	2,12				
	30,0 - 39,9	8	0,35	1,10	0,46	1,18	2,36				
Nd	$0,\!4-4,\!9$	12	0,18	4,25	-0,58	0,47	2,20				
	0,5 - 9,9	19	0,28	5,03	1,40	1,28	2,09				
	10,0 - 19,9	5	0,25	2,21	-0,73	0,74	2,78				
	30,0 - 39,9	14	0,25	0,77	-0,40	1,92	2,16				
Sm	0,5 - 1,9	10	0,36	46,01	-21,00	1,44	2,26				
	5,0 - 9,9	5	0,37	6,29	1,38	0,49	2,78				
	10,0 - 19,9	18	0,38	3,53	7,41	8,66	2,12				
	60,0-69,9	7	0,56	0,83	-1,01	3,23	2,45				
Eu	30,0 - 39,9	6	0,61	1,79	2,71	3,72	2,57				
	40,0 - 59,9	5	0,40	0,07	0,26	0,91	2,57				
Gd	0,5 - 9,9	10	0,18	54,06	-43,33	2,54	2,26				
	70,0 - 79,0	15	0,50	0,80	-0,02	2,01	2,16				
Tb	0,5 - 9,9	5	0,75	7,79	-5,34	1,22	2,78				
	50,0 - 59,9	11	1,22	2,25	0,65	1,00	2,20				
Dy	0,5 - 9,9	10	0,28	10,88	-0,78	0,50	2,26				
	20,0-29,9	6	0,42	0,40	-0,07	1,30	2,57				
	60,0 - 89,9	15	0,72	0,82	-0,05	1,64	2,16				
Но	5,0 - 9,9	13	0,20	2,90	3,61	3,03	2,57				
	20,0-29,9	5	0,53	1,92	0,07	0,90	2,78				
	60,0 - 89,9	15	0,41	0,45	0,03	1,71	2,16				
Er	20,0-29,9	5	0,76	8,11	-4,43	1,54	2,57				
	60,0 - 89,9	15	0,91	1,01	-0,06	1,42	2,16				
Tm	40,0 - 59,9	6	0,47	1,12	-0,02	0,20	2,57				
	60,0 - 89,9	15	0,59	0,85	-0,07	0,22	2,16				
Yb	20,0-29,9	5	0,53	0,40	-0,09	1,23	2,57				
	60,0 - 89,9	15	0,60	0,64	0,04	1,89	2,16				
Lu	40,0 - 59,9	8	0,68	1,49	-0,07	3,60	2,37				
	60,0 - 89,9	15	0,66	0,63	-0,08	1,24	2,16				

с условиями проведения эксперимента. Они могут быть вызваны совокупностью многих причин, важнейшими из которых являются: наличие дрейфа интенсивности; погрешности изготовления образцов; недостаточная электропроводность и т.д.

Ко второй группе относятся погрешности, связанные с ZAF-коррекцией. Наиболее существенным источником погрешностей является неточное знание ряда физических параметров, таких как коэффициенты массового поглощения рентгеновского излучения, особенно для длинноволновой области спектра.

Правильность электронно-зондового анализа может быть проверена путем анализа синтезированных соединений, обладающих узкой областью гомогенности, т.е. строго соответствующих стехиометрическим формульным отношениям. Расчет правильности измерений проводили по следующим формулам:

$$d_r = d \cdot 100/C,\tag{4}$$

$$t = \frac{|d_r|\sqrt{N}}{S_r},\tag{5}$$

где d_r — относительная систематическая составляющая погрешности методики; *t*-критерий Стьюдента.

В табл. 9 приведены данные анализа (N = 5) некоторых TR-минералов методами ЭДС и ВДС. По группам таких результатов проведен расчет метрологических характеристик (табл. 10). Воспроизводимость измерений, в основном, зависит от содержания элемента в минерале, возрастая с уменьшением концентрации. На практике отмечали случаи снижения воспроизводимости анализа из-за нестабильности некоторых минералов, в частности, фторидов и карбонатов. Использование в ЭД-методе по сравнению с ВД значительно

Таблица 11. Сравнительные результаты (%) микроанализа образцов минералов, выполненного с помощью ВДС («ИМГРЭ») и ЭДС («ВИМС») анализаторов

							Мине	рал						
Элемент	Ксен	отим	Гагар	оинит	Лант	ганит			Ря	д перовск	ит – лопај	рит		
	WDS	EDS	WDS	EDS	WDS	EDS	WDS	EDS	WDS	EDS	WDS	EDS	WDS	EDS
La	<0,05		2,09	2,05	23,81	23,29	1,21	1,64	3,14	3,27	6,98	6,98	8,06	8,33
Ce	<0,05		7,14	6,77	30,09	29,89	2,90	3,35	9,37	9,55	13,72	14,0	16,56	16,47
Pr	<0,10		0,70	0,81	1,48	1,79	0,14	0,51	0,80	1,01	1,12	1,12	1,37	1,33
Nd	0,30	0,36	4,48	5,18	4,39	5,48	1,13	0,90	3,14	3,12	2,90	3,63	4,30	4,20
Sm	0,70	0,72	2,10	1,95	0,18	н/о	0,13	_	0,25	_	0,18	н/о	0,23	_
Eu	н/о		<0,08		н/о	н/о		_		—	н/о	_		
Gd	2,34	2,36	3,00	3,15	н/о	н/о		_		—	н/о	_		
Tb	0,48	0,23	0,63	0,72	н/о	н/о		_		—	н/о	_		
Dy	3,59	4,88	2,88	3,11	н/о	н/о		_		—	н/о	_		
Но	0,42	0,78	0,50		н/о	н/о		_		—	н/о	_		
Er	3,04	3,49	1,16	1,47	н/о	н/о		_		—	н/о	_		
Tm	0,31	0,51	0,13		н/о	н/о		_		—	н/о	_		
Yb	2,48	2,91	1,01	0,98	<0,08	н/о		_		—	0,13	_		
Lu	0,50		0,24		н/о	н/о		_		—	н/о	_		
Y	31,72	30,68	16,41	14,52	<0,05	н/о		_		—	н/о	_		
Th	0,99	1,61	<0,05		н/о	н/о	0,29	—	1,06	1,57	0,33	—	0,37	0,61
U	1,36	2,65	0,10		н/о	н/о		—			н/о	—		
Nb	н/о		н/о		0,05	н/о	1,91	1,56	1,65	1,64	6,83	6,29	1,17	0,73
Zr	<0,05	0,92	0,05		н/о	н/о	н/о	—	0,08		0,08	н/о	0,06	
Pb	н/о	н/о	н/о	н/о	н/о	н/о	н/о	н/о	н/о	н/о	н/о	н/о	н/о	н/о
Ti	<0,05		н/о		н/о	н/о	31,36	31,47	29,21	29,92	22,20	24,74	27,34	28,22
Si	0,58	0,80	н/о		0,05	н/о		—			0,02	н/о		
Р	14,28	14,36	н/о		0,05	н/о		—			н/о	—		
Fe	0,06	н/о	0,04		н/о	н/о	0,91	1,19	0,46	0,47	0,18	0,23	0,26	0,15
Ca	0,11	н/о	13,41	11,60	н/о	н/о	25,10	24,66	15,36	15,43	3,46	3,35	5,92	6,14
Sr	н/о	н/о	0,82	1,06	0,03	н/о	0,27		0,31		3,52	2,96	0,30	0,46
Na	н/о	н/о	3,81	7,20	н/о	н/о	0,81	0,80	2,91	3,06	6,39	6,97	5,07	4,83
F	н/о	н/о	35,42	37,45	<0,11	н/о			_		0,14			
0*	30,22	31,04	н/о		10,59	10,34	33,50	33,25	30,66	31,16	26,58		28,34	28,60
CO_2^*					28,87	28,49			_					
Сумма	93,90	98,3	96,37	98,02	99,80	99,28	99,64	99,33	98,41	100,19	95,10	99,2	99,30	99,54
Примеча	ние. «н/	о» — не	обнаруже	н; «—» –	– не опре	еделяли; '	* — расче	ет по сте	хиометрі	и.				

меньших значений тока электронного пучка благоприятно сказывается на воспроизводимости анализа термонеустойчивых минералов. Как видно из табл. 10, принадлежность минерала к тому или иному классу заметного влияния на воспроизводимость не оказывает. Обращает на себя внимание также и тот факт, что значения параметров для одних и тех же интервалов как в случае синтезированных соединений, так и природных минералов практически одинаковы (расхождение статистически незначимо). Следует отметить, что полученные значения статистических параметров характеризуют не только инструментальную погрешность метода, но и гетерогенность исследованных образцов. О завышении этих значений свидетельствует рост S_r для элементов, находящихся в изоморфных отношениях.

Полученные результаты по метрологической оценке минералов (табл. 10) показывают, что для некоторых интервалов содержаний значения *t*-критерия больше табличных, т.е. систематическая погрешность статистически значима. Выявленные расхождения могут быть объяснены следующими причинами:

 изоморфные замещения РЗЭ в минералах между собой;

использование несоответствующего ОС, неточное измерение интенсивности и вычисление поправочных факторов.

Погрешность между экспериментальными и теоретическими значениями для большинства интервалов не превышает 5 %. Стоит также отметить систематическую погрешность, обусловленную наложением близких по энергиям линий.

Таким образом, проведенные исследования позволяют сделать заключение об эффективности и достаточной степени надежности микрозондового энергодисперсионного метода при анализе TR-минералов. Об этом также свидетельствует сопоставление результатов определения состава TR-минералов, полученных с помощью ЭДС в ФГБУ «ВИМС» и с помощью ВДС по методике [5] в ФГУП «ИМГРЭ» (табл. 11).

При определении основных и второстепенных компонентов TR-минералов методы регистрации с помощью ЭДС и ВДС сопоставимы по точности, при определении элементов-примесей (ниже 1 %) метод ЭДС существенно уступает методу ВДС.

ЛИТЕРАТУРА

- Авдонин А. С., Абрамов М. В., Нечелюстов Г. Н. и др. Методика микрозондового анализа редкоземельных минералов / Расширенные тезисы докладов I Всесоюзной школы-семинара «Микрозонд и прогресс в геологии», 1989. С. 94 – 95.
- Архангельская В. В., Нечелюстов Г. Н., Рябенко С. В. Минералогия лантаноидов и иттрия в процессе редкометалльного щелочного метасоматоза / В кн.: Проблемы генетической и прикладной минералогии. — М., 1990. С. 88 – 106.
- 3. Баринский Р. Л. О соотношении четных и нечетных редкоземельных элементов в различных минералах / Доклады АН СССР. 1958. Т. 120. № 3. С. 573 576.
- Булах А. Г., Золотарев А. А., Кривовичев В. Г. Структура, изоморфизм, формулы, классификация минералов. — СПб.: СПбГУ, 2014. — 132 с.

- Куликова И. М., Набелкин О. А. Рентгеноспектральный микроанализ минералов, содержащих редкоземельные элементы / Заводская лаборатория. Диагностика материалов. 2014. № 4. Т. 80. С. 20 – 27.
- Лаврентьев Ю. Г., Карманов Н. С., Усова Л. В. Электронно-зондовое определение состава минералов: микроанализатор или сканирующий электронный микроскоп? / Геология и геофизика. 2015. Т. 56. № 8. С. 1473 – 1482.
- Лазарева Е. В., Жмодик С. М., Добрецов Н. Л. и др. Главные рудообразующие минералы аномально богатых руд месторождения Томтор (Арктическая Сибирь) / Геология и геофизика. 2015. Т. 56. № 6. С. 1080 – 1115.
- Лапутина И. П. Микрозонд в минералогии. М.: Наука, 1991. 139 с.
- Рид С. Дж. Б. Электронно-зондовый микроанализ и растровая электронная микроскопия в геологии. — М.: Техносфера, 2008. — 232 с.
- Рябенко С. В., Нечелюстов Г. Н., Завьялов Е. Н. Новые данные об изоморфизме в природной системе CaF₂ – TRF₃ / Новые данные о минералах. 1988. Вып. 35. С. 151 – 161.
- Chehreh Chelgani S., Hart B., Xia L. A TOF-SIMS surface chemical analytical study of rare earth element minerals from micro-flotation tests products / Minerals Eng. 2013. Vol. 45. P. 32 – 40.
- Friel J. J., Mott R. B. Energy-Dispersive Spectrometry from Then until Now: A Chronology of Innovation / Microsc. Microanal. 1999. N 4. P. 559 – 566.
- Wendt M., Dellith J. M-spectra of rare earth elements measured with an ultra-thin windows Si(Li) detector / Microchim. Acta. 2004. Vol. 145. P. 261 – 265.
- http://www.oxinst.ru/html/INCAWave.htm (дата обращения 12.08.16).

REFERENCES

- Avdonin A. S., Abramov M. V., Nechelyustov G. N., et al. Methods of microprobe analysis of rare earth minerals / Extended abstracts of the First All-Union School Seminar "Microprobe and Progress in Geology," 1989. P. 94 – 95 [in Russian].
- Arkhangel'skaya V. V., Nechelyustov G. N., Ryabenko S. V. Mineralogy of lanthanides and yttrium in the rare metal alkali metasomatism / Problems of genetic and applied mineralogy. — Moscow, 1990. P. 88 – 106 [in Russian].
- Barinskii R. L. On the relation between the odd and even rare earth elements in various minerals / Dokl. AN SSSR. 1958. Vol. 120. N 3. P. 573 – 576 [in Russian].
- Bulakh A. G., Zolotarev A. A., Krivovichev V. G. The structure, isomorphism, formulas, minerals classification. — St. Petersburg: Izd. SPbGU, 2014. — 132 p. [in Russian].
- Kulikova I. M., Nabelkin O. A. X-ray microanalysis of minerals containing rare earth elements / Zavod. Lab. Diagn. Mater. 2014. Vol. 80. N 4. P. 20 – 27 [in Russian].
- Lavrent'ev Yu. G., Karmanov N. S., Usova L. V. Electron microprobe determination of the composition of minerals: microanalyzer or a scanning electron microscope? / Geol. Geofiz. 2015. Vol. 56. N 8. P. 1473 – 1482 [in Russian].
- Lazareva E. V., Zhmodik S. M., Dobretsov N. L., et al. The main ore-forming minerals abnormally rich ore deposits Tomtor (Arctic Siberia) / Geol. Geofiz. 2015. Vol. 56. N 6. P. 1080 – 1115 [in Russian].
- Laputina I. P. Microprobe in mineralogy. Moscow: Nauka, 1991. 139 p. [in Russian].
- Reed J. B. Electron Microprobe analysis and scanning electron microscopy in geology. 2nd Edition. — Cambridge Univ. Press, 2005. — 202 p.
- Ryabenko S. V., Nechelyustov G. N., Zav'yalov E. N. New data on the isomorphism in the natural system CaF₂ – TRF₃ / Nov. Dannye Mineral. 1988. Issue 35. P. 151 – 161 [in Russian].
- Chehreh Chelgani S., Hart B., Xia L. A TOF-SIMS surface chemical analytical study of rare earth element minerals from micro-flotation tests products / Minerals Eng. 2013. Vol. 45. P. 32 – 40.
- Friel J. J., Mott R. B. Energy-Dispersive Spectrometry from Then until Now: A Chronology of Innovation / Microsc. Microanal. 1999. N 4. P. 559 – 566.
- Wendt M., Dellith J. M-spectra of rare earth elements measured with an ultra-thin windows Si(Li) detector / Microchim. Acta. 2004. Vol. 145. P. 261 – 265.
- 14. http://www.oxinst.ru/html/INCAWave.htm (accessed 12.08.16).