Заводская лаборатория. Диагностика материалов

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков


Полный текст:


Sequential extraction procedures (SEP) have been widely used for the fractionation of trace elements in soils according to their physicochemical mobility and bioaccessibility. Potassium/sodium pyrophosphate in alkaline medium may be considered as the most appropriate extracting reagent for the recovery of amorphous metal-organic complexes, which play a very important role in biological, physical, and chemical processes in soil. However, the selectivity of pyrophosphate has been poorly studied. In the present work the ability of pyrophosphate to attack mineral inorganic phases of environmental solids was assessed using dynamic extraction, which allows one to minimize artifacts and mimic natural conditions. Samples of gabbro and granite containing nearly no organic compounds were taken as example. The eluents applied addressed exchangeable, specifically sorbed, bound to Mn oxides, and bound to metal-organic complexes fractions extractable by 0.05 M Ca(NO3)2, 0.43 M CH3COOH, 0.1 M NH2OH · HCl, and 0.1 M K4P2O7 at pH 11, respectively. As expected, pyrophosphate extraction leads to a partial dissolution of elements bound to inorganic compounds. The recovery of aluminum, iron, manganese, and rare earth elements by pyrophosphate is up to 4% of their total concentrations in samples. The results were discussed on the basis of coordination chemistry of pyrophosphate complexes. In general, pyrophosphate extraction could be further regarded to be sufficiently selective for the dissolution of metal-organic complexes while using SEP in environmental analysis, soil science, and biogeochemistry. Nevertheless, in the interpretation of the fractionation results, a partial dissolution of mineral inorganic phases should be taken into consideration, especially for soils with low content of organic compounds.

Об авторах

P. S. Fedotov
National University of Science and Technology “MISiS”
4 Leninsky prospect, 119049, Moscow

R. Kh. Dzhenloda
National University of Science and Technology “MISiS”; Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
4 Leninsky prospect, 119049, Moscow; 19 Kosygin st., 119991, Moscow

А. А. Drozdov
Lomonosov Moscow State University, Faculty of Chemistry
Lomonosov Moscow State University, Faculty of Chemistry

V. K. Karandashev
National University of Science and Technology “MISiS”; The Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences
4 Leninsky prospect, 119049, Moscow; 6 Akademika Ossipyana st., 142432, Chernogolovka, Moscow region

Список литературы

1. Ure A. M. and Davidson C. M. Chemical speciation in the environment. — Glasgow: Blackie, 2001. — 480 p.

2. Hlavay J., Prohaska T., Weisz M., et al. Determination of trace elements bound to soils and sediment fractions (IUPAC Technical Report) / Pure Appl. Chem. 2004. Vol. 76. N 2. P. 415 – 442.

3. Templeton D. M., Ariese F., Cornelis R., et al. Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches (IUPAC Recommendations 2000) / Pure Appl. Chem. 2000. Vol. 72. N 8. P. 1453 – 1470.

4. Ladonin D. V. Heavy metal compounds in soils: problems and methods of study / Eurasian Soil Sci. 2002. Vol. 35. P. 605 – 613.

5. Filgueiras A. V., Lavilla I., Bendicho C., et al. Chemical sequential extraction for metal partitioning in environmental solid samples / J. Environ. Monit. 2002. Vol. 4. N 6. P. 823 – 857.

6. Gleyzes C., Tellier S., and Astruc M. Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures / TrAC: Trends Anal. Chem. 2002. Vol. 21. N 6 – 7. P. 451 – 467.

7. Tessier A., Campbell P. G. C., and Bisson M. Sequential extraction procedure for the speciation of particulate trace metals / Anal. Chem. 1979. Vol. 51. N 7. P. 844 – 851.

8. Ure A. M., Quevauviller P., Muntau H., and Griepink B. Speciation of heavy hetals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities / Int. J. Environ. Anal. Chem. 1993. Vol. 51. N 1 – 4. P. 135 – 151.

9. Rauret G., López-Sánchez J. F., Sahuquillo A., et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials / J. Environ. Monit. 1999. Vol. 1. N 1. P. 57 – 61.

10. Fedotov P. S. andMiró M. Fractionation and mobility of trace elements in soils and sediments / Biophysico-Chemical Processes of Heavy Metals and Metalloids in Soil Environments. — Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. P. 467 – 520.

11. Shuman L. M. Sodium hypochlorite methods for extracting microelements associated with soil organic matter / Soil Sci. Soc. Am. J. 1983. Vol. 47. N 4. P. 656 – 660.

12. Krishnamurti G. S. R., Huang P. M., Van Rees K. C. J., et al. Speciation of particulate-bound cadmium of soils and its bioavailability / Analyst. 1995. Vol. 120. N 3. P. 659 – 665.

13. Zeien H., Brümmer G. W. Chemische extraktionen zur bestimmung der bindungsformen von schwermetallen in Böden / Mitt. Dtsch. Bodenkundl. Gesellsch. 1989. Vol. 59. N 1. P. 505 – 510.

14. McLaren R. G., Crawford D. V. Studies on soil copper. I. The fractionation of copper in soils / J. Soil Sci. 1973. Vol. 24. N 2. P. 172 – 181.

15. Miller W., Martens D. Effect of sequence in extraction of trace metals from soils / Soil Sci. Soc. Am. J. 1986. Vol. 50. N 1. P. 598 – 601.

16. Papp C. S. E., Filipek L. H., and Smith K. S. Selectivity and effectiveness of extractants used to release metals associated with organic matter / Appl. Geochem. 1991. Vol. 6. N 3. P. 349 – 353.

17. Dai Q., Ae N., Suzuki T., et al. Assessment of potentially reactive pools of aluminum in Andisols using a five-step sequential extraction procedure / Soil Sci. Plant Nutr. 2011. Vol. 57. N 4. P. 500 – 507.

18. Erich M. S., Plante A. F., Fernández J. M., et al. Effects of profile depth and management on the composition of labile and total soil organic matter / Soil Sci. Soc. Am. J. 2012. Vol. 76. N 2. P. 408.

19. Brittain S. R., Cox A. G., Tomos A. D., et al. Chemical speciation studies on DU contaminated soils using flow field flow fractionation linked to inductively coupled plasma mass spectrometry (FlFFF-ICP-MS) / J. Environ. Monit. 2012. Vol. 14. N 3. P. 782.

20. Ellerbrock R. H., Kaiser M. Stability and composition of different soluble soil organic matter fractions-evidence from ä13C and FTIR signatures / Geoderma. 2005. Vol. 128. N 1 – 2. P. 28 – 37.

21. Fedotov P. S., Ermolin M. S., Ivaneev A. I., et al. Continuous-flow leaching in a rotating coiled column for studies on the mobility of toxic elements in dust samples collected near a metallurgic plant / Chemosphere. 2016. Vol. 146. P. 371 – 378.

22. Fedotov P. S., Ermolin M. S., Karandashev V. K., and Ladonin D. V. Characterization of size, morphology and elemental composition of nano-, submicron, and micron particles of street dust separated using field-flow fractionation in a rotating coiled column / Talanta. 2014. Vol. 130. P. 1 – 7.

23. Karandashev V. K., Turanov A. N., Orlova T. A., et al. Use of the inductively coupled plasma mass spectrometry for element analysis of environmental objects / Inorg. Mater. 2008. Vol. 44. N 14. P. 1491 – 1500.

24. Fedotov P. S.,Kördel W., Miró M., et al. Extraction and Fractionation Methods for Exposure Assessment of Trace Metals, Metalloids, and Hazardous Organic Compounds in Terrestrial Environments / Crit. Rev. Environ. Sci. Technol. 2012. Vol. 42. N 11. P. 1117 – 1171.

25. Fedotov P. S., Savonina E. Y., Wennrich R., et al. A hyphenated flow-through analytical system for the study of the mobility and fractionation of trace and major elements in environmental solid samples / Analyst, 2006. Vol. 131. N 4. P. 509 – 515.

26. Fedotov P. S., Savonina E. Y., Wennrich R., and Ladonin D. V. Studies on trace and major elements association in soils using continuous-flow leaching in rotating coiled columns / Geoderma. 2007. Vol. 142. N. 1 – 2. P. 58 – 68.

27. Neaman A., Mouélé F., Trolard F., and Bourrié G. Improved methods for selective dissolution of Mn oxides: applications for studying trace element associations / Appl. Geochem. 2004. Vol. 19. N 6. P. 973 – 979.

28. Vodyanitskii Y. N., Vostokova T. A. The effect of extraction conditions on iron transfer to Tamm’s extract / Eurasian Soil Sci. 2004. Vol. 37. N 1. P. 60 – 68.

29. Bottari E., Ciavatta L. The copper (II)-pyrophosphate complexes in 1 M Na+(ClO4–)medium at 25°C / Inorg. Chim. Acta. 1968. Vol. 2. P. 74 – 80.

30. Kondratev V., Kravtsov V., Vinokurov I. Stability of simple and protonated pyrophosphate complexes of lead (II) / Sov. Electrochem. 1981. Vol. 17. N 1. P. 205 – 209.

31. Lambert S. M., Watters J. I. The complexes of pyrophosphate ion with alkali metal ions / J. Am. Chem. Soc. 1957. Vol. 79. N 16. P. 4262 – 4265.

32. Kravtsov V. I., Kondratiev V. V. Kinetics and mechanism of pyrophosphate metal complexes electroreduction / Electrochim. Acta. 1991. Vol. 36. N 3 – 4. P. 427 – 434.

33. Giesbrecht E., Audrieth L. F. Phosphates and polyphosphates of the rare earth elements — II / J. Inorg. Nucl. Chem. 1958. Vol. 6. N 4. P. 308 – 313.


Для цитирования:

Fedotov P.S., Dzhenloda R.K., Drozdov А.А., Karandashev V.K. METAL-ORGANIC COMPLEXES IN ENVIRONMENTAL SOLID SAMPLES: ON THE SELECTIVITY OF PYROPHOSPHATE EXTRACTION. Заводская лаборатория. Диагностика материалов. 2019;85(6):5-10.

For citation:

Fedotov P.S., Dzhenloda R.K., Drozdov A.A., Karandashev V.K. METAL-ORGANIC COMPLEXES IN ENVIRONMENTAL SOLID SAMPLES: ON THE SELECTIVITY OF PYROPHOSPHATE EXTRACTION. Industrial laboratory. Diagnostics of materials. 2019;85(6):5-10.

Просмотров: 565

ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)