Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Study of the damageability of materials using a plasma focus device “Vikhr”

https://doi.org/10.26896/1028-6861-2019-85-8-29-36

Abstract

The results of irradiation of metal (nickel alloy Inconel 718) and semiconductor (silicon single crystal) materials by helium ions and helium plasma pulsed beams using a plasma focus (PF) device “Vikhr” are presented. The damageability and radiation-thermal stability of the materials exposed to high-power pulsed helium ion beams of the working gas and high-temperature plasma have been studied and assessed in a wide range of the radiation power density (pulse duration 10-8 - 10-6 sec). Experiments showed that both materials exposed to “soft” irradiation (q = 106 -107 W/cm2), which did not lead to complete surface melting, underwent the process of sputtering mainly in the areas containing mechanical defects. However, for each of the materials, local areas of melting of the surface layer are observed, which is associated with an irregular distribution of the particle density over the cross section of the radiation flux incident on the target sample. A thin film was found on the surface of both materials: SiO2 oxide on a Si single crystal; and a film resulted from the interaction of the alloy components with residual gases in the PF chamber and chemical elements deposited earlier on the surface of Inconel 718 alloy. Irradiation in a “hard” mode (q = 108 - 109 W/cm2) with a large number of puls shots leads to melting and partial evaporation of the surface layer with the formation of a wave-like relief and microstructural defects such as ridges, craters, bubbles and microcracks after crystallization of the melt. A solidified surface layer becomes very brittle, easily separates from the non-melting Si base and breaks up into small particles like a powder. We have shown that after the beam-plasma treatment, the surface layer of silicon contains the elements occurred in other structural and functional materials located in the PF chamber. At each pulsed discharge, they are deposited on the irradiated surface of Si single crystal. Experiments and studies have also shown that a device “Vikhr” is promising for simulation of extreme conditions of exposing material to ionizing radiation, which are realized in thermonuclear devices with magnetic and inertial plasma confinement, as well as for creating more “soft” radiation regimes characteristic of the radiation fluxes of the space environment.

About the Authors

V. A. Gribkov
Baikov Institute of Metallurgy and Materials Science of the RAS
Russian Federation

Vladimir A. Gribkov.

Leninsky pr. 49, Moscow, 119334.



I. V. Borovitskaya
Baikov Institute of Metallurgy and Materials Science of the RAS
Russian Federation

Irina V. Borovitskaya.

Leninsky pr. 49, Moscow, 119334.



A. S. Demin
Baikov Institute of Metallurgy and Materials Science of the RAS
Russian Federation

Aleksandr S. Demin.

Leninsky pr. 49, Moscow, 119334.



S. A. Maslyaev
Baikov Institute of Metallurgy and Materials Science of the RAS
Russian Federation

Sergey A. Maslyaev.

Leninsky pr. 49, Moscow, 119334.



E. V. Morozov
Baikov Institute of Metallurgy and Materials Science of the RAS
Russian Federation

Evgeny V. Morozov.

Leninsky pr. 49, Moscow, 119334.



V. N. Pimenov
Baikov Institute of Metallurgy and Materials Science of the RAS
Russian Federation

Valery N. Pimenov.

Leninsky pr. 49, Moscow, 119334.



G. G. Bondarenko
National Research University High School of Economics (HSE)
Russian Federation

Gennady G. Bondarenko.

ul. Myasnitskaya 20, Moscow, 101000.



A. I. Gaydar
Scientific Research Institute of Advanced Materials and Technologies
Russian Federation

Anna I. Gaydar.

ul. Malaya Pionerskaya 12, Moscow, 115054.



References

1. Subbotin M. L., Kurbatov D. K., Filimonova E. A. Worldwide review of studies of demonstration fusion power reactors / VANT. Ser. Termoyad. Sintez. 2010. Issue 3. P 55 - 74 [in Russian].

2. Belous A. I., Soloduha V A., Shvedov S. V Space electronics. — Moscow: Tekhnosfera, 2015. — 488 p. [in Russian].

3. Bezrodnykh I. P, Tyutnev A. P, Semenov V T. Radiation effects in space. Part 3. The effect of ionizing radiation on electronic products. — Moscow: AO “Korporatsiya VNIIEM”, 2017. — 64 p. [in Russian].

4. Garkusha I. E., Burdakov A. V., Ivanov I. A., Kruglyakov E. 1!, et al. Plasma surface interaction during ITER transient events simulation with QSPA Kh-50 and Gold-3 Facilities / Problems of atomic science and technology. Ser. Plasma Physics. 2008. N 6. P 58 - 60.

5. Zhitlukhin A., Klimov N., Landman I., Linke J., Loarte A., Merola M., et al. Effects of ELMs on ITER divertor armour materials / J. Nucl. Mater. 2007. Vol. 363 - 365. P 301 - 308.

6. Bolt H., Barabash V, Krauss W., Linke J., Neu R., Suzuki S., Yoshida N. Materials for the plasma-facing components of fusion reactors / J. Nucl. Mater. 2004. Vol. 329 - 333. P 66 - 73.

7. Bernard A., Bruzzone H., Choi P., Chuaqui H., Gribkov V, Herrera J., Hirano K., Krejci A., Lee S., et al. Scientific status of plasma focus research / J. Moscow Phys. Soc. 1998. N 8. P 93 - 170.

8. Gribkov V, Banaszak A., Bienkowska B., Dubrovsky A., Ivanova-Stanik I., Jakubowski L., et al. Plasma dynamics in the PF-1000 device under full-scale energy storage: II. Fast electron and ion characteristics versus neutron emission parameters and gun optimization perspectives / J. Phys. D. Appl. Phys. 2007. N40. P 3592-3607. doi: 10.1088/0022-3727/40/12/008.

9. Gribkov V. A. Physical processes taking place in dense plasma focus devices at the interaction of hot plasma and fast ion streams with materials under test / Plasma Phys. Control. Fusion. 2015. Vol. 57. N 6. doi: 10.1088/0741-3335/57/6/065010.

10. Pimenov V N., Maslyaev S. A., Ivanov L. I., Dyomina E. V, Gribkov V A., Dubrovsky A. V, Scholz M., et al. Surface and bulk processes in materials induced by pulsed ion and plasma beams at Dense Plasma Focus devices / Nukleonika. 2006. Vol. 51. N 1. P 71 - 78.

11. Ivanov L. I., Pimenov V N., Gribkov V A. Interaction of power pulsed fluxes of energy with materials / Fiz. Khim. Obrab. Mater. 2009. N 1. P 23 - 37 [in Russian].

12. Krauz V, Mitrofanov K., Scholz M., Paduch M., Karpinski L., Zielinska E., Kubes P. Experimental study of the structure of the plasma-current sheath on the PF-1000 facility / Plasma Phys. Control. Fusion. 2012. Vol. 54. N 22. 025010.

13. Kubes P, Klir D., Paduch M., Pisarczyk T., Scholz M., et al. Characterization of the neutron production in the modified MA plasma focus / IEEE Trans. Plasma Sci. PS-40. 2012. P 1075 -1081.

14. Cicuttin A., Crespo M., Gribkov V, Niemela J., Tuniz C., Zanolli C., et al. Experimental results on the irradiation of nuclear fusion relevant materials at the dense plasma focus “Bora” device / Nucl. Fusion. 2015. Vol. 55. 063037. doi: 10.1088/0029-5515/55/6/063037.

15. Borovitskaya I. V, Gribkov V A., Grigorovich K. V, Demin A. S., Maslyaev S. A, Morozov E. V, Pimenov V N., Sprygin G. S., Zepelev A. B., Gusakov M. S., Logachev I. A., Bondarenko G. G., Gaydar A. I. Effect of pulsed helium ion fluxes and helium plasma on the inconel 718 alloy / Metally. 2018. Issue 9. P 826 -834. doi: 10.1134/S0036029518090057 [in Russian].

16. Gribkov V., Paduch M., Zielinska E., Demin A., Demina E., Kazilin E., Latyshev S., Maslyaev S., Morozov E., Pimenov V. Comparative analysis of damageability produced by powerful pulsed ion/plasma streams and laser radiation on the plasma-facing W samples / Radiation Physics and Chemistry. 2018. Vol. 150. P 20 - 29. doi: 10.1016/j.radphyschem.2018.03.020.

17. Bondarenko G. G. Radiation physics, structure and strength of solids. — Moscow: Laboratoria znaniy, 2016. — 462 p. [in Russian].

18. Physical values. Handbook / Grigoryev I. S., Meylikhov E. Z., eds. — Moscow: Energoatomizdat, 1991. — 1232 p. [in Russian].


Review

For citations:


Gribkov V.A., Borovitskaya I.V., Demin A.S., Maslyaev S.A., Morozov E.V., Pimenov V.N., Bondarenko G.G., Gaydar A.I. Study of the damageability of materials using a plasma focus device “Vikhr”. Industrial laboratory. Diagnostics of materials. 2019;85(8):29-36. (In Russ.) https://doi.org/10.26896/1028-6861-2019-85-8-29-36

Views: 673


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)