Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Formation of ionic associates with pyrogallol complexes of antimony (III) and their application for spectrophotometric determination of antimony

https://doi.org/10.26896/1028-6861-2019-85-9-15-21

Abstract

The possibility of using water soluble pyrogallol red (PRWS) as a photometric reagent for the quantitative determination of antimony (III) in real objects has been studied. Formation of a colored product is observed in acidic solutions (pH 3.8 - 4.5) with a weak oxidizing agent (iodine) present for preliminary oxidation of SbHg to salts of Sb (III). The excess iodine is eliminated through introduction of sodium thiosulfate solution after obtaining the photometric form. The maximum analytical signal of the colored form is observed at 378 nm (e = 5.936 x 103). A decrease in the acidity of the solution (pH > 7) is accompanied by the formation of sodium salts of the reagent which prevents further complexation, whereas the only one maximum in the absorbance within the recommended pH range directly indicates to the formation of the the only one ionic associate (AI). The ionic associate thus formed appeared low stability in time. Unfortunately, change in the dielectric constant of the solution failed to give a positive effect and measurements of the absorbance of the colored compound were limited to 3 minutes. Determination of the composition and possible mechanism of the ionic associate formation was carried out on using the methods of molar ratios and isomolar series. After stripping of stibine into the absorption system, an ionic associate of the composition M:R = 1:1 is formed with a calculated stability constant of 4.01 x 105. The obtained results are used to develop a spectrophotometric (SP) method for antimony determination with the limits of detection and quantitative determination of the element 1.30 and 4.32 pg/ml, respectively. The developed method is valid in terms of the specificity, linearity, precision and accuracy, and, therefore, can be recommended for determination of the antimony content in any control and analytical laboratory.

About the Authors

E. V. Turusova
I. N. Ulyanov Chuvash State University
Russian Federation

Elena V. Turusova

 15, Moskovsky pr, Cheboksary, 428015



A. N. Lyshchikov
I. N. Ulyanov Chuvash State University
Russian Federation

Anatolii N. Lyshchikov

 15, Moskovsky pr, Cheboksary, 428015



O. E. Nasakin
I. N. Ulyanov Chuvash State University
Russian Federation

Oleg E. Nasakin

 15, Moskovsky pr, Cheboksary, 428015



A. V. Andreeva
I. N. Ulyanov Chuvash State University
Russian Federation

Ekaterina V. Andreeva 

 15, Moskovsky pr, Cheboksary, 428015



References

1. Sato S., Uchikawa S., Iwamoto E., Yamamoto Y. Spectrophotometric Determination of Antimony (III) By Solvent Extraction with Mandelic Acid and Malachite Green / Anal. Lett. 1983. Vol.16. N11. E 827 -834. DOE 10.1080/ 00032718308065220.

2. Raza A., Ansari Т. M. Spectrophotometric determination of citalopram hydrobromide in tablet dosage form using chloranil / Pak. J. Pharm. Sci. 2014. Vol. 27. N 2. E 255 - 260.

3. Andreae M. O., Asmode J. E, Foster P., Van't dack L. Determination of antimony (III), antimony (V), and methylantimony species in natural waters by atomic absorption spectrometry with hydride generation / Anal. Chem. 1981. Vol. 53. N 12. E 1766 - 1771. DOE 10.1021/ac00235a012.

4. Gallignani M., Ayala C, Brunetto M. R., et al. Flow analysis/hydride generation/Fourier transform infrared spectrometric determination of antimony in pharmaceuticals / Talanta. 2003. Vol.59. E 923-934. DOE 10.1016/S00399140(02)00648-3.

5. Garg B. S., Trikha K. C., Singh R. P. Spectrophotometric determination of antimony with 3,5,7,4'-tetrahydroxyflavone (kaempferol) / Talanta. 1969. Vol. 16. N 3. E 462 - 464. DOE 10.1016/0039-9140(69)80047-0.

6. Shrivas K., Agrawal K., Harmukh N. On-site spectrophotometric determination of antimony in water, soil and dust samples of Central India / Journal of hazardous materials. 2008. Vol. 155. E 173-178. DOE 10.1016/j.jhazmat.2007.11.044.

7. Rath S., Jardim W. E, Dorea J. G. A simple spectrophotometric procedure for the determination of antimony (III) and (V) in antileishmanial drugs / Fresenius J. Anal. Chem. 1997. Vol. 358. N 4. E 548 - 550. DOE 10.1007/s002160050.

8. Christopher D. Pi., West T. S. Spectrophotometric determination of antimony with Bromopyrogallol Red / Talanta. 1966. Vol. 13. N 3. E 507 - 520.

9. Sato S., Uchikawa S. Extraction-Spectrophotometric Determination of Antimony(V) with 2-Hydroxyisocaproic Acid and Citrate, with Application to Differential Determination of Antimony (V) and Antimony (III) / Anal. Sci. 1986. Vol. 2. N 1. P 47 - 51. DOE 10.2116/analsci.2.47.

10. Pan L. Т., Liu X. H., Li Т., Fan J. W. Complexation between Antimony and o-Chlorophenylfluorone and its Application to Determination of Antimony in Wastewater / Croat. Chem. Acta. 2009. Vol. 82. N 3. E 619 - 622.

11. Dym B. A. The direct spectrophotometric determination of antimony in gold-antimony alloys and white metals / Analyst. 1963.1. 1044. E 232 - 236. DOE 10.1039/AN9638800232.

12. Kulikova D. I., Kulikova D. M., Shapnik M. S. Complexation of antimony (III) with citric acid / Vestn. Kazan. Tekhn. Univ. 2007. N 3 - 4. E 7 – 12 [in Russian].

13. Nemodruk A. A. Analytical chemistry of antimony. — Moscow: Nauka, 1978. E 57 - 58 [in Russian].

14. Moreno M. E., Perez-conde C, Camara C. Sensitization of stibine generation: antimony determination in environmental samples by atomic fluorescence spectrometry / J. Anal. At. Spectrom. 1998. Vol.13. E 1181-1187. DOE 10.1039/A801785E

15. Chen Pi., Zheng S., Brindle I. D. Combined generator/separator. Part 2. Stibine generation combined with flow injection for the determination of antimony in metal samples by atomic emission spectrometry / Analyst. 1992. Vol. 117(10). E 16031608. DOE 10.1039/AN9921701603.

16. Yuroku Y, Makoto K., Yaeko M. A. New spectrophotometric determination of antimony with silver-diethyldithiocarbamate and o-phenanthroline mixture in chloroform / Chem. Lett. 1972. Vol. 1. N 7. E 535 - 538. DOE 10.1246/cl.l972.535.

17. Neri T. S., Carvalho D. C, Alvesb V N., Coelho N. M. M. Noteworthy Method for Direct Determination of Sblll and Total Inorganic Antimony in Natural Waters / J. Braz. Chem. Soc. 2015. Vol.26. N5. E 985-991. DOE 10.5935/01035053.20150062.

18. Nakahara Т., Kikui N. Determination of trace concentrations of antimony by the introduction of stibine into an inductively-coupled plasma for atomic emission spectrometry / Anal. Chim. Acta. 1985. Vol. 172. E 127-138. DOE 10.1016/S00032670(00)82600-8.

19. Turusova E. V, Grigor'eva L. A., Lyshchikov A. N., Nasakin О. E. Photochemical determination of arsenic microimpurity in raw medicinal plant materials / Farmatsiya. 2014. N 3. P 12 - 15 [in Russian].

20. RF State Standard GOST R 52180-2003. Drinking water. Determination of elements content by stripping voltammetric method. — Moscow: Standartinform, 2007. — 20 p. [in Russian].

21. Interstate Standard GOST 23957.1-2003. Zinc. Atomic absorption method for determination of lead, cadmium, antimony, iron and copper. — Minsk: IPK Izd-vo standartov, 2005. — 7 p. [in Russian].


Review

For citations:


Turusova E.V., Lyshchikov A.N., Nasakin O.E., Andreeva A.V. Formation of ionic associates with pyrogallol complexes of antimony (III) and their application for spectrophotometric determination of antimony. Industrial laboratory. Diagnostics of materials. 2019;85(9):15-21. (In Russ.) https://doi.org/10.26896/1028-6861-2019-85-9-15-21

Views: 632


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)