Modeling of the reaction interdiffusion in the polycrystalline systems with limited component solubility
https://doi.org/10.26896/1028-6861-2019-85-9-35-41
Abstract
About the Authors
N. N. AfoninRussian Federation
Nikolay N. Afonin
ul. Lenina 86, Voronezh, 394043
V. A. Logacheva
Russian Federation
Vera A. Logacheva
Universitetskaya pi. 1, Voronezh, 394018
References
1. Smigelskas A. D., Kirkendall E. O. Zinc Diffusion in alpha brass / Trans. AIME. 1947. Vol. 171. E 130 - 142.
2. Darken L. S. Diffusion, mobility and their interrelation through free energy in binary Metallic Systems / Trans. AMIE. 1948. Vol. 175. E 184 - 190.
3. Sauer E, Freise V Diffusion in binaren Gemischen mit Volumenanderung / Berichte der Bunsengesellschaft fur physikalische Chemie. 1962. Vol. 66. N 4. E 353 - 362. https://doi.org/ 10.1002/bbpc. 19620660412
4. Guy A. G. Reference planes for binary diffusion with variable molar volume / Journal of Materials Science. 1985. Vol. 20. E 4317 - 4328. https://doi.org/10.1007/bf00559320.
5. Boettinger W. J., Guyer J. E., Campbell С. E., et al. Computation of the Kirkendall velocity and displacement fields in a one-dimensional binary diffusion couple with a moving interface / Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2007. Vol. 463. N 2088. E 3347 3373. https://doi.org/10.1098/rspa.2007.1904.
6. Gurov K. P., Kartashkin B. A., Ugaste Yu. E. Interdiffusion in multiphase metallic systems. — Moscow: Nauka, 1981. — 350 p. [in Russian].
7. Kulkarni N., Warmack R. J. Bruce, Radhakrishnan В., et al. Overview of SIMS-Based Experimental Studies of Tracer Diffusion in Solids and Application to Mg Self-Diffusion / J. Phase Equilib. Diffusion. 2014. Vol. 35. N 6. E 762 - 778. https://doi.org/10.1007/sll669-014-0344-4.
8. Tsuji S. Multiphase binary diffusion in infinite and semi-infinite media: Part I. On the determination of interdiffusion coefficients / Metallurgical and Materials Transactions A. 1994. Vol. 25. N 4. E 741 - 751. https://doi.org/10.1007/bf02665451.
9. Paul A., Kodentsov A., van Loo F. J. J. Intermetallic growth and Kirkendall effect manifestations in Cu/Sn and Au/Sn diffusion couples / Zeitschrift fur Metallkunde. 2004. Vol. 95. N 10. E 913-920.
10. Aleksandrov O. V., Kozlovsky V V. Simulation of interaction between nickel and silicon carbide during the formation of ohmic contacts / Semiconductors. 2009. Vol. 43. N 7. E 885 891. https://doi.org/10.1134/S1063782609070100 [in Russian].
11. Molokhina L. A., Rogalin V E., Kaplunov I. A., et al. Mathematical model for the growth of phases in binary multiphase systems upon isothermic annealing / Russian Journal of Physical Chemistry A. 2017. Vol. 91. N 9. E 1635 - 1641. https://doi.org/10.1134/s0036024417090217.
12. Zheng J., Hu X., Ren Z., et al. Solid-state reaction studies in A1203 - Ti02 system by diffusion couple method / ISIJ International. 2017. Vol.57. N10. E 1762-1766. https://doi.org/ 10.2355/isijinternational.isijint-2017-042.
13. Ren Z. S., Hu X. J., Li S. Y, et al. Interdiffusion in the Fe203 - Ti02 system / Int. J. Miner. Metall. Mater. 2013. Vol. 20. N 3. E 273. https://doi.org/10.1007/sl2613-013-0723-6.
14. Mangum J., Podowitz-Thomas S., Nikkei J., et al. Investigating Pb diffusion across buried interfaces in Pb(Zr0 2Ti0 8)03 thin films via time-of-flight secondary ion mass spectrometry depth profiling / Surf. Interface Anal. 2017. Vol. 49. N 116. E 973 - 977. https://doi.org/10.1002/sia.6255.
15. Silva C., Costa A. R. G., da Silvac R., et al. Magnetic and electrical characterization of Ti02 single crystals co-implanted with iron and cobalt / Journal of Magnetism and Magnetic Materials. 2014. Vol.364. E 106-116 https://doi.org/10.1016/ j.jmmm.2014.04.022.
16. Dholam R., Patel N., Ad ami M., et al. Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped Ti02 composite thin films photocatalyst / International Journal of Hydrogen Energy. 2009. Vol. 34. N 13. E 5337 - 5346. https:// doi.org/10.1016/j.ijhydene.2009.05.011.
17. Sobczyk-Guzendaa A., Owczareka S., Szymanowskia H., et al. Iron doped thin Ti02 films synthesized with the RF PECVD method / Ceramics International. 2015. Vol. 41. N 6. E 7496 - 7500. https://doi.Org/10.1016/j.ceramint.2015.02.071.
18. Samarsky A. A. Theory of differential schemes. — Moscow: Nauka, 1977. — 656 p. [in Russian].
19. Hu W., Hayashi K., Fukumura Т., et al. Spontaneous formation of suboxidic coordination around Co in ferromagnetic rutile Tiog5Cooo502 film / Applied Physics Letters. 2015. Vol. 106. N 22. E 222403-1 - 222403-5. https://doi.org/10.1063/ 1.4921847.
20. Dai G., Liu S., Liang Y., et al. Synthesis and enhanced photoelectrocatalytic activity of p-n junction Co304/Ti02 nanotube arrays / Applied Surface Science. 2013. Vol. 264. E 157 161. https://doi.Org/10.1016/j.apsusc. 2012. 09. 160.
21. Matsumoto Y., Murakam M., Shono Т., et al. Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide / Science. 2001. Vol.291. E 854-856. https:// doi.org/10.1126/science.1056186.
22. Sooda S., Umar A., Mehta S., et al. Highly effective Fedoped Ti02 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds / J. of Colloid and Interface Science. 2015. Vol. 450. E 213 - 223. https://doi.org/10.1016/jjcis.2015.03.018.
23. Afonin N. N., Logacheva V A., Gerasimenko Yu. V, et al. Interaction of cobalt and titanium with a thin films of their oxides during vacuum annealing / Condensed matter and interphases. 2013. Vol. 15. N 3. E 232 - 237 [in Russian].
24. Logacheva V A., Afonin N. N., Vakhtel V M., et al. Interection of components in bilayer film system Fe - Ti02, obtained by magnetron sputtering / Condensed matter and interphases. 2016. Vol. 18. N 3. E 345 - 355 [in Russian].
25. Chambers S., Thevuthasan S., Farrow R. F. C, et al. Epitaxial growth and properties of ferromagnetic co-doped Ti02 anatase / Appl. Phys. Lett. 2001. Vol. 79. E 3467 - 3469. https:// doi.org/10.1063/1.1420434.
26. Cordishi D., Burriesci N., D'Alba E, et al. Structural characterization of Fe/Ti oxide photocatalysts by X-ray, ESR, and Mossbauer methods / J. Solid State Chem. 1985. Vol. 56. E 182 190. https://doi.org/10.1016/0022-4596(85)90055-6.
27. Sasaki J., Peterson N., Hoshino K. Tracer impurity diffusion in single-crystal rutile (Ti02_I) / J. Phys. Chem. Solids. 1985. Vol.46. N11. E 1267-1283. https://doi.org/10.1016/ 0022-3697(85)90129-5.
28. Cyuan-You S., Hwan-Wen L., Hong-Yang L. Kirkendall porosity in barium titanate-strontium titanate diffusion couple / Ceramics International. 2009. Vol. 35. N 7. E 2951 2958. https://doi.Org/10.1016/j.ceramint.2009.04.009.
29. Wang X., Feng J., Bai Y., et al. Synthesis, properties, and applications of hollow micro-/nanostructures / Chem. Rev. 2016. Vol. 116. E 10983-11060. https://doi.org/10.1021/acs.chemrev 5b00731.
30. Klingera L., Rabkinab E. On the nucleation of pores during the nanoscale Kirkendall effect / Materials Letters. 2015. Vol.161. E 508-510. https://doi.0rg/lO.lOl6/j.matlet. 2015.09.004.
31. Zhang D., Jin C, Li Z., et al. Oxidation behavior of cobalt nanoparticles studied by in situ environmental transmission electron microscopy / Science Bulletin. 2017. Vol. 62. N 11. E 775 - 778. https://doi.Org/10.1016/j.scib.2017.05.003.
Review
For citations:
Afonin N.N., Logacheva V.A. Modeling of the reaction interdiffusion in the polycrystalline systems with limited component solubility. Industrial laboratory. Diagnostics of materials. 2019;85(9):35-41. (In Russ.) https://doi.org/10.26896/1028-6861-2019-85-9-35-41