Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Analysis of nanomaterials based on indium and zinc oxides by high resolution continuum source atomic absorption spectrometry

https://doi.org/10.26896/1028-6861-2019-85-10-5-11

Abstract

The properties of nanostructured materials based on zinc and indium oxides can be modified by adding alloying elements to obtain the necessary electrical or optical properties. For example, the specificity of the chemical properties of ZnO and In2O3 for the determination of toxic gases is achieved by immobilizing Au, Ag, etc. nanoparticles on their surface. Control of the material composition plays an important role in determining the dependence between the dopant content and functional properties of the materials. The study is aimed at the development of a methodical approach to the multi-element determination of catalytic dopants (Ag, Au) and matrix elements in nanostructured tin and indium oxides atomic using continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS). The matrix of the synthesized nanostructured materials (NM) is formed by the corresponding oxide with possible oxygen deficiency occurred due to the temperature conditions of synthesis (300 – 700°C), and the content of additives (Ag, Au) being varied from 1 to 3 % wt. Pyrolysis and atomization conditions for sequential multi-element atomic absorption analysis are determined. The most suitable pyrolysis temperatures upon HR CS GFAAS determinations of Ag and Au (for both In and Zn oxides), are 1000, 1600, 1200 and 900°C, respectively. The most suitable atomization temperatures for ETAA-NIS determinations of Ag, Au (for indium oxide based NM, Au (for zinc oxide based NM), In, and Zn are 1800, 2200, 2100, 2200, and 1500°C, respectively. The accuracy of analyte determination reached 1 – 4 % rel. The correctness of the results was proved by inductively coupled plasma mass spectrometry. The developed method provides control of the composition of synthesized nanostructured materials for their more efficient use in photovoltaics, as well as in production of chemical sensors for detection of harmful compounds like CO, NO2, NH3.

About the Authors

V. V. Eskina
National University of Science and Technology «MISIS»; State Research and Design Institute of Rare-Metal Industry «Giredmet»
Russian Federation

Vasilina V. Eskina

4 Leninskiy prospect, Moscow, 119049; 5 – 1 B. Tolmachevsky lane, Moscow, 119017



V. B. Baranovskaya
National University of Science and Technology «MISIS»; State Research and Design Institute of Rare-Metal Industry «Giredmet»; Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Russian Federation

Vasilisa B. Baranovskaya

4 Leninskiy prospect, Moscow, 119049; 5 – 1 B. Tolmachevsky lane, Moscow, 119017; 31 Leninskiy prospect, Moscow, 119991


D. G. Filatova
Lomonosov Moscow State University, Faculty of Chemistry
Russian Federation

Daria G. Filatova

GSP-1, 1-3 Leninskiye Gory, Moscow, 119991



A. A. Osipova
Lomonosov Moscow State University, Faculty of Chemistry
Russian Federation

Alesya A. Osipova

GSP-1, 1-3 Leninskiye Gory, Moscow, 119991



Yu. A. Karpov
National University of Science and Technology «MISIS»; State Research and Design Institute of Rare-Metal Industry «Giredmet»; Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Russian Federation

Yury A. Karpov

4 Leninskiy prospect, Moscow, 119049; 5 – 1 B. Tolmachevsky lane, Moscow, 119017; 31 Leninskiy prospect, Moscow, 119991



References

1. Sosnin D. V., Kudryashov D. A., Gudovskikh S. A., Zelentsov K. S. Electrical and optical properties of nanosized films of doped zinc and indium oxides deposited by RF magnetron sputtering at room temperature / Tech. Phys. Letters. 2015. Vol. 11. N 8. P. 804 – 806. DOI: 10.1134/S1063785015080325.

2. Krivetskiy V. V., Rumyantseva M. N., Gaskov A. M. Chemical modification of nanocrystalline tin dioxide for selective gas sensors / Russ. Chem. Rev. 2013. Vol. 82. N 10. P. 917 – 941. DOI: 10.1070/RC2013v082n10ABEH004366.

3. Krivetskiy V., Ponzoni A., Comini E., et al. Selectivity Modification of SnO2-Based Materials for Gas Sensor Arrays / Electroanalysis. 2010. Vol. 22. N 23. P. 2809 – 2816. DOI: 10.1002/elan.201000277.

4. Xu L., Zhang H., Tian Y., et al. Photochemical synthesis of ZnO@Au nanorods as an advanced reusable SERS substrate for ultrasensitive detection of light-resistant organic pollutant in wastewater / Talanta. 2019. Vol. 194. P. 680 – 688. DOI: 10.1016/j.talanta.2018.10.060.

5. Vorobyeva N., Rumyantseva M., Filatova D. et al. Highly Sensitive ZnO(Ga, In) for Sub-ppm Level NO2 Detection: Effect of Indium Content / Chemosensors. 2017. Vol. 5. N 2. P. 18(1) – 18(11). DOI: 10.3390/chemosensors5020018.

6. An S., Park S., Ko H., et al. Enhanced ethanol sensing properties of multiple networked Au-doped In2O3 nanotube sensors / J. Phys. Chem. Solids. 2013. Vol. 74. N 7. P. 979 – 984. DOI: 10.1016/j.jpcs.2013.02.016.

7. Naberezhnyi D., Rumyantseva M., Filatova D., et al. Effects of Ag Additive in Low Temperature CO Detection with In2O3 Based Gas Sensors / Nanomaterials. 2018. Vol. 8. N 10. P. 801(1) – 801(15). DOI: 10.3390/nano8100801.

8. Mishra R. K., Zachariah A. K., Thomas S. (eds.). Energy-Dispersive X-ray Spectroscopy Techniques for Nanomaterial. In book: Microscopy Methods in Nanomaterials Characterization. Chapter 12. P. 383 – 405. — Amsterdam: Elsevier, 2017. DOI: 10.1016/B978-0-323-46141-2.00012-2.

9. Pathak T. K., Kroon R. E., Swart H. C. Photocatalytic and biological applications of Ag and Au doped ZnO nanomaterial synthesized by combustion / Vacuum. 2018. Vol. 157. P. 508 – 513. DOI: 10.1016/j.vacuum.2018.09.020.

10. Filatova D. G., Eskina V. V., Barampvskaya V. B., et al. Determination of gold and cobalt dopants in advanced materials based on tin oxide by slurry sampling high-resolution continuum source graphite furnace atomic absorption spectrometry / Spectrochim. Acta, Part B. 2018. Vol. 140. P. 1 – 4. DOI: 10.1016/j.sab.2017.12.003.

11. Filatova D. G., Alov N. V., Vorobyeva N. A., et al. Quantification of modifiers in advanced materials based on zinc oxide by total reflection X-ray fluorescence and inductively coupled plasma mass spectrometry / 2016. Vol. 118. P. 62 – 65. DOI: 10.1016/j.sab.2016.02.008.

12. Turkin A. A., Chizhov A. S., Seregina I. F., et al. Determination of Gold and Antimony in Advanced Materials Based on Tin Dioxide Using Inductively Coupled PlasmaMass Spectrometry / Inorg. Mater. 2015. Vol. 51. N 14. P. 1420 – 1422. DOI: 10.1134/S0020168515140113.

13. Tricoli A., Graf M., Pratsinis S. E. Optimal doping for enhanced SnO2 sensitivity and thermal stability / Adv. Funct. Mater. 2008. Vol. 18. P. 1969 – 1976. DOI: 10.1002/adfm.200700784.

14. Mädler L., Roessler A., Pratsinis S. E., et al. Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO2 nanoparticles / Sens Actuators B. 2006. Vol. 114. N 1. P. 283 – 295. DOI: 10.1016/j.snb.2005.05.014.

15. Krotova A. A., Prikhodko K. Ya., Vladimirova S. A., Filatova D. G. Determination of nickel, zinc and cobalt in advanced materials based on NixCo3 – xO4 and ZnxCo3 – xO4 by inductively coupled plasma mass spectrometry and X-ray fluorescence / Zavod. Lab. Diagn. Mater. 2018. Vol. 84. N 1. P. 10 – 13 [in Russian]. DOI: 10.26896/1028-6861-2018-84-1-I-10-13.

16. Nomenclature, symbols, units and their usage in spectrochemical analysis. II. Data interpretation. Analytical chemistry division / Spectrochim. Acta, Part B. 1978. Vol. 33. N 6. P. 241 – 245. DOI: 10.1016/0584-8547(78)80044-5.

17. Currie L. A. Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995) / Pure Appl. Chem. 1995. Vol. 67. N 10. P. 1699 – 1723. DOI: 10.1351/pac199567101699.

18. Mocak J., Bond A. M., Mitchell S., Scollarry G. A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: Application to voltammetric and stripping techniques (Technical Report) / 1997. Pure Appl. Chem. 1997. Vol. 69. N 2. P. 297 – 328. DOI: 10.1351/pac199769020297.


Review

For citations:


Eskina V.V., Baranovskaya V.B., Filatova D.G., Osipova A.A., Karpov Yu.A. Analysis of nanomaterials based on indium and zinc oxides by high resolution continuum source atomic absorption spectrometry. Industrial laboratory. Diagnostics of materials. 2019;85(10):5-11. (In Russ.) https://doi.org/10.26896/1028-6861-2019-85-10-5-11

Views: 768


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)