Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Calibration standard samples for multi-element analysis of silicate rocks using inductively coupled plasma — mass spectrometry with laser ablation

https://doi.org/10.26896/1028-6861-2019-85-10-12-22

Abstract

A comparison of different standard samples — artificial glass SRM-612 (Standard Reference Material) and standard samples of natural composition SG-1A, SG-3, ST-1A and SGD-1A — used for external calibration in the elemental analysis of silicate rocks in the form of fused glasses by inductively coupled plasma mass spectrometry and laser ablation (LA-ICP-MS) is carried out with a goal of selecting the most suitable samples for plotting calibration dependence upon determination of the major and trace elements when using LA-ICP-MS for routine analysis. The results showed that the error of determination for both major and trace elements is lower (compared to SRM-612) when external calibration is carried out using the reference materials of natural composition with Si and Fe contents close to those in the analyzed samples. The use of internal standards in both cases decreases the systematic error attributed to the drift of LA parameters and different ablation yields. The correctness of the determination of 28 elements is proved in comparison of the results of the analysis of four standard samples with the reference values. The obtained results are used to select calibration standards for LA-ICP-MS analysis of the samples of unknown composition. The results of analysis of six samples of unknown composition match to the error limit the results of X-ray fluorescence analysis (major elements) and ICP-MS (trace elements in solutions). Refining of the content of trace elements in the previously certified reference materials allows them to be used for calibration in routine analysis of geological rocks. The developed LA-ISP-MS technique is a rapid method for determination of a wide range of elements, in particular rare earth elements, in silicate rocks and can be used for routine analysis without additional sample preparation after X-ray fluorescence analysis.

About the Authors

S. V. Palesskiy
Sobolev Institute of Geology and Mineralogy
Russian Federation

Stanislav V. Palesskiy

3 Akad. Koptyuga prosp., Novosibirsk, 630090



I. V. Nikolaeva
Sobolev Institute of Geology and Mineralogy
Russian Federation

Irina V. Nikolaeva

3 Akad. Koptyuga prosp., Novosibirsk, 630090



References

1. Yu Z., Norman M. D., Robinson P. Major and trace element analysis of silicate rocks by XRF and laser ablation ICP-MS using lithium borate fused glasses: matrix effects, instrument response and results for international reference materials / Geostand. Newsl. 2003. Vol. 27. N 1. P. 67 – 89. DOI: 10.1111/j.1751-908X.2003.tb00713.x.

2. Gunther D., Quadt A., Wirz R., et al. Elemental Analyses Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) of Geological Samples Fused with Li2B4O7 and Calibrated Without Matrix-Matched Standards / Microchim. Acta. 2001. Vol. 136. N 3 – 4. P. 101 – 107. DOI: 10.1007/s006040170038.

3. Odegard M., Dundas S. H., Flem B., and Grimstvedt A. Application of a double-focusing magnetic sector inductively coupled plasma mass spectrometer with laser ablation for the bulk analysis of rare earth elements in rocks fused with Li2B4O7 / Fresenius J. Anal. Chem. 1998. Vol. 362. N 5. P. 477 – 482. DOI: 10.1007/s002160051110.

4. Robinson Ph., Townsend T., Yu Z., and Münker C. Determination of Scandium, Yttrium and Rare Earth Elements in Rocks by High Resolution Inductively Coupled Plasma-Mass Spectrometry / Geostand. Newsl. 1999. Vol. 23. N 1. P. 31 – 46. DOI: 10.1111/j.1751-908X.1999.tb00557.x.

5. Willbold M., Jochum K. P. Multi-element isotope dilution sector field ICP-MS: A precise technique for the analysis of geological materials and its application to geological reference materials / Geostand. Newsl. 2005. Vol. 29. N 1. P. 63 – 82. DOI: 10.1111/j.1751-908X.2005.tb00656.x.

6. Laser-Ablation-ICPMS in the Earth Sciences — principles and applications. Vol. 29. — St. John’s, Newfoundland: Mineralogical Association of Canada, 2001. — 252 p.

7. Sylvester P. J., Jackson S. E. A brief history of laser ablation inductively coupled plasma mass-spectrometry (LA-ICP-MS) / Elements. 2016. Vol. 12. N 5. P. 307 – 310. DOI: 10.2113/gselements.12.5.307.

8. Svetov S. A., Stepanova A. V., Chazhengina S. Yu., et al. Precision (ICP-MS, LA-ICP-MS) analysis of rocks and minerals: methods and assessment of results accuracy on the example of early Cambrian mafic complexes / Tr. Karel. NTs RAN. 2015. N 7. P. 54 – 73. DOI: 10.17076/geo140 [in Russian].

9. Ver Hoeve T. J., Scoates J. S., Wall C. J., et al. Evaluating downhole fractionation corrections in LA-ICP-MS U-Pb zircon geochronology / Chem. Geol. 2018. Vol. 483. P. 201 – 217. DOI: 10.1039/c8ja00321a.

10. Raith A., Hutton R. C. Quantification methods using laser ablation ICP-MS. Part 1: Analysis of powders / Fresenius J. Anal. Chem. 1994. Vol. 350. N 4 – 5. P. 242 – 246. DOI: 10.1007/BF00322476.

11. Eggins S. M. Laser Ablation ICP-MS Analysis of Geological Materials Prepared as Lithium Borate Glasses / Geostand. Newsl. 2003. Vol. 27. N 2. P. 147 – 162. DOI: 10.1111/j.1751-908X.2003.tb00642.x.

12. Becker J. S., Dietze H.-J. Determination of trace elements in geological samples by ablation inductively coupled plasma mass spectrometry / Fresenius J. Anal. Chem. 1999. Vol. 365. P. 429 – 434. DOI: 10.1007/s002160051635.

13. Orihashi Y., Hirata T. Rapid quantitative analysis of Y and REE abundances in XRF glass bead for selected GSJ reference rock standards using Nd-YAG 266 nm UV laser ablation ICP-MS / Geochem. J. 2003. Vol. 37. P. 401 – 412. DOI: 10.2343/geochemj.37.401.

14. Jenner F. E., Arevalo R. D. Major and trace element analysis of natural and experimental igneous systems using LA-ICP-MS / Elements. 2016. Vol. 12. N 5. P. 311 – 316. DOI: 10.2113/gselements.12.5.311.

15. Petrelli M., Perugini D., Poli G., Peccerillo A. Graphite electrode lithium tetraborate fusion for trace element determination in bulk geological samples by laser ablation ICP-MS / Microchim. Acta. 2007. Vol. 158. P. 275 – 282. DOI 10.1007/s00604-006-0731-6.

16. He Z., Huang F., Yu X., et al. A Flux-Free Fusion Technique for Rapid Determination of Major and Trace Elements in Silicate Rocks by LA-ICP-MS / Geostand. Geoanal. Res. 2016. Vol. 40. N 1. P. 5 – 27. DOI: 10.1111/ggr.12240.

17. Kurosawa M., Shima K., Ishii S., Sasa K. Trace Element Analysis of Fused Whole-Rock Glasses by Laser Ablation-ICP-MS and PIXE / Geostand. Newsl. 2006. Vol. 30. N 1. P. 17 – 30. DOI: 10.1111/j.1751-908X.2006.tb00908.x.

18. YongSheng L., ZhaoChu H., Ming L., and Shan G. Applications of LA-ICP-MS in the elemental analyses of geological samples / Chin. Sci. Bull. 2013. Vol. 58. N 32. P. 3863 – 3878. DOI: 10.1007/s11434-013-5901-4.

19. Chernonozhkin S. M., Saprykin A. I. Application of laser ablation for solid samples analysis by inductively coupled plasma — Mass-spectometry / Mass-spektrometriya. 2012. Vol. 9. N 3. P. 157 – 166 [in Russian].

20. Laser Ablation-ICP-MS in the Earth Sciences / Current practices and Outstanding Issues. Short Course Series. Vol. 40 // P. Sylvester, ed. — Vancouver: 2008. — 348 p.

21. Weis P., Beck H. P., Gunther D. Characterizing ablation and aerosol generation during elemental fractionation on absorption modified lithium tetraborate glasses / Anal. Bioanal. Chem. 2005. Vol. 381. P. 212 – 224. DOI: 10.1007/s00216-004-2947-9.

22. Lin J., Liu Y., Yang Y., Hu Z. Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios / Solid Earth Sciences 2016. Vol. 1. N 1. P. 5 – 27. DOI: 10.1016/j.sesci.2016.04.002.

23. Li C.-Y., Jiang Y.-H., Zhay Y., et al. Trace element analyses of fluid inclusions using laser ablation ICP-MS / Solid Earth Sci. 2018. Vol. 3. N 1. P. 8 – 13. DOI: 10.1016/j.sesci.2017.12.001.

24. Jackson S. E. Calibration strategies for elemental analysis by LA-ICP-MS In Laser ablation-ICP-MS in the Earth Sciences / Current practices and Outstanding Issues. Short Course Series. Vol. 40 // P. Sylvester, ed. — Vancouver, 2008. P. 169 – 188.

25. Nikolaeva I. V., Palesskii S. V., Koz’menko O. A., Anoshin G. N. Analysis of geologic reference materials for REE and HFSE by inductively coupled plasma-mass spectrometry (ICP-MS) / Geochem. Int. 2008. Vol. 46. N 10. P. 1085 – 1091. DOI: 10.1134/S0016702908100066.

26. Nikolaeva I. V., Palesskii S. V., Chirko O. S., Chernonozhkin S. M. Determination of major and trace elements by inductively coupled plasma mass-spectrometry in silicate rocks after fusion with LiBO2 / Analit. Kontrol’. 2012. Vol. 16. N 2. P. 1 – 9 [in Russian]. DOI: http://elar.urfu.ru/bitstream/10995/42542/1/aik_2012_02_134-142.pdf.

27. Experimintal samples. http://www.igc.irk.ru/ru/content_page/148?start=0 (accessed 08.11.2018) [in Russian].

28. Mysovskaya I. N., Smirnova E. V., Lozhkin V. I., Pakhomova N. N. New data on determination of rare and scattered elements in standard geological materials using inductively coupled plasma mass-spectrometry technique / Zavod. Lab. Diagn. Mater. 2009. Vol. 75. N 10. P. 60 – 66 [in Russian].


Review

For citations:


Palesskiy S.V., Nikolaeva I.V. Calibration standard samples for multi-element analysis of silicate rocks using inductively coupled plasma — mass spectrometry with laser ablation. Industrial laboratory. Diagnostics of materials. 2019;85(10):12-22. (In Russ.) https://doi.org/10.26896/1028-6861-2019-85-10-12-22

Views: 744


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)