Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Design of X-ray units for inspection applications (review)

https://doi.org/10.26896/1028-6861-2019-85-10-35-42

Abstract

A review of the structural elements (individual components, printed circuit boards, etc.) of X-ray systems intended for inspection of electronic products is presented. The basic principles of constructing such systems and typical composition of the equipment capable of providing the minimum necessary functionality are considered. Among the main technical characteristics an emphasis is made on the resolution power, which depends on the pixel size and thickness of the scintillator layer of the X-ray detector, as well as on the size of the effective focal spot of the X-ray tube. Comparative analysis of the advantages and shortcomings of clastic (open type) and sealed (closed type) X-ray tubes – one of the main nodes of such systems-is carried out. A structural diagram of a clastic X-ray tube is presented along with and the characteristics of domestic and foreign developments. The main disadvantages of the systems based on clastic tubes are considered. Large dimensions, large weight, relative complexity of the construction, presence of the vacuum-tight collapsible connections, the necessity of using a pumping system providing high vacuum, the necessity of high-voltage training of the tube assemblies after their replacement, and high cost are noted separately. The design of sealed off BS microfocus X-ray tube and radiation sources on their base which can be used in the development of domestic X-ray systems are briefly described. The diameter and length of the metal-glass cylinder tube are 75 and 315 mm, and the diameter and length of the copper anode tube 10 and 100 mm, respectively. A tungsten target is deposited on a beryllium substrate (X-ray tube exit window) with a thickness of 0.2 mm. The minimum focal length during x-ray photography is 0.5 mm. A comparative analysis of the characteristics of a clastic (collapsible) X-ray tube with continuous pumping and an X-ray tube sealed from an exhaust cart revealed the possibility of successful use of sealed tubes in modern X-ray systems used for inspection applications.

About the Authors

N. N. Potrakhov
St. Petersburg Electrotechnical University ETU «LETI»
Russian Federation

Nikolay N. Potrakhov

Ul. Professora Popova 5, St. Petersburg, 197376


V. B. Bessonov
St. Petersburg Electrotechnical University ETU «LETI»
Russian Federation

Victor B. Bessonov

Ul. Professora Popova 5, St. Petersburg, 197376



A. V. Obodovskiy
St. Petersburg Electrotechnical University ETU «LETI»
Russian Federation

Anatoliy V. Obodovskiy

Ul. Professora Popova 5, St. Petersburg, 197376



A. Yu. Gryaznov
St. Petersburg Electrotechnical University ETU «LETI»
Russian Federation
Artem Yu. GryaznovUl. Professora Popova 5, St. Petersburg, 197376


V. V. Klonov
St. Petersburg Electrotechnical University ETU «LETI»
Russian Federation

Vladimir V. Klonov

Ul. Professora Popova 5, St. Petersburg, 197376



А. I. Mazurov
NIPK Elektron
Russian Federation

Anatoliy I. Mazurov

Volhonskoe shosse, kvartal 2, d. 4B, St. Petersburg, 198188



References

1. Pirogova E. V. PCB Design and Technology. — Moscow: Forum, 2005. — 560 p. [in Russian].

2. Bakanov G. F., Sokolov S. S., Sukhodolskiy V. Yu. Basics of designing radio electronic technology. — Moscow: Akademia, 2007. — 363 p. [in Russian].

3. Koledov L. A. Technology and design of microcircuits, microprocessors and microassemblies. — St. Petersburg: Lan’, 2008. — 400 p. [in Russian].

4. Shmakov M. The choice of x-ray control system. Technologist’s view / Tekhnol. Élektron. Promyshl. 2006. N 4. P. 33 – 40 [in Russian].

5. Garanin A. Criteria for choosing an X-ray unit: necessary and sufficient / Élektron. Nauka. Tekhnol. Biznes. 2012. N 6. P. 170 – 177 [in Russian].

6. Artemyev B. V., Bukley A. A. Radiation monitoring: study guide. — Moscow: Spektr, 2013. — 192 p. [in Russian].

7. Gryaznov A. Yu., Zhamova K. K., Bessonov V. B., Livshits A. O., Kunashik E. S. Methods of obtaining pseudo-color X-ray images in dual-energy X-ray / Biotekhnosfera. 2014. N 3(33). P. 17 – 20 [in Russian].

8. Staroverov N. E., Kholopova E. D., Gryaznov A. Yu., Zhamova K. K. Development of digital processing method of microfocus X-ray images / Journal of Physics: Conference Series. 2017. Vol. 808. N 1. P. 34 – 38.

9. Computer program state registration certificate N 2018612318. The program control dynamic X-ray detector / Obodovskiy A. V., Bessonov V. B., Larionov I. A., Klonov V. V. 25.12.17 [in Russian].

10. Ivanov S. A., Shchukin G. A. X-ray tubes for technical purposes. — Leningrad: Énergoatomizdat, 1989. — 200 p. [in Russian].

11. Heinrich K., Newbury D., Yakowitz H. (eds.). Use of Monte Carlo calculations in electron probe microanalysis and scanning electron microscopy: proceedings of a workshop held at the National Bureau of Standards. — Gaithersburg, Maryland, 1975. — 164 p.

12. Ivanov S. A., Chigak F. F. X-ray tubes with targets of a «shooting through» type and characteristics of their radiation / Instruments for studying the physical properties of a material. — Kiev: Naukova dumka, 1974. P. 61 – 65 [in Russian].

13. Drouin D., Couture A., Joly D. CASINO V2.42 — A Fast and Easy-to-use Modeling Tool for Scanning Electron Microscopy and Microanalysis Users / Scanning. 2007. Vol. 29. P. 92 – 101.

14. Bystrov Yu. A., Ivanov S. A. X-ray technology and accelerator devices. — Moscow: Vysshaya shkola, 1983. — 288 p. [in Russian].

15. Podymsky A. A. Powerful X-ray tubes for X-ray projection: Candidate’s Thesis. — Moscow, 2016. — 140 p. [in Russian].

16. Ivanov S. A., Ioffe Yu. K., Kirienko S. V. Compact X-ray Sources / Obzory Élektron. Tekhn. Ser. 4. 1987. Issue 4 [in Russian].

17. Podymskiy A. A., Potrakhov N. N. New generation microfocus X-ray tubes / Kontrol. Diagnostika. 2017. N 4. P. 4 – 8 [in Russian].

18. Pat. 2278440 RF, MPK H01J35/02, H05G1/02, A61B6/03. X-ray source monoblock / Potrakhov N. N., Mukhin V. M.; applicant and owner St. Petersburg State Electro-Tech. Univ. «LETI» (RU). — N 200511181309/09; appl. 20.04.05; publ. 20.06.05. Byull. N 17 [in Russian].

19. Bessonov V. B., Obodovskiy A. V., Klonov V. V., Kostrin D. K. Microfocal computed tomography — a new method for the study of microminiature objects / Evraz. Soyuz Uch. 2014. N 5 – 3 (5). P. 12 – 15 [in Russian].

20. Hamamatsu — X-ray source. http://www.hamamatsu.com (accessed 20.12.2018).


Review

For citations:


Potrakhov N.N., Bessonov V.B., Obodovskiy A.V., Gryaznov A.Yu., Klonov V.V., Mazurov А.I. Design of X-ray units for inspection applications (review). Industrial laboratory. Diagnostics of materials. 2019;85(10):35-42. (In Russ.) https://doi.org/10.26896/1028-6861-2019-85-10-35-42

Views: 818


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)