Tensile test for hydrated gel-films of bacterial cellulose
https://doi.org/10.26896/1028-6861-2019-85-10-64-69
Abstract
Bacterial cellulose (BC) finds multiple applications due to unique physicochemical properties and biocompatibility. The mechanical characteristics of hydrated BC such as Young modulus, tear strength, and tensile elongation under maximum load are crucial in some instances. The diversity of test methods does not allow correct comparison of the results of BC thermomechanical analysis (TMA) obtained by different researchers. However, current standards for determination of the mechanical characteristics are not intended for highly hydrated samples and do not take into account conditions for their use. The goal of the study is to develop a tensile test method for hydrated gel films of bacterial cellulose and to compare their relative elongation when tested in air and in an aqueous medium. Test samples were produced in a synthetic nutrient broth using Medusomyces gisevii Sa-12 symbiont. Physico-mechanical analysis was performed on a TMA-60 thermomechanical analyzer. The loading rate was selected proceeding from the requirement that the specimen will not dry out when tested in air. The microfibrillar structure of BC samples was studied before and after stretching using scanning electron microscope (JSM-840). The results showed that at different loading rate, tensile strength varies by a factor of 16, Young’s modulus, and elongation at maximum load by a factor of 1.3 and 1.5, respectively. The maximum tensile elongation of hydrated BC in an aqueous medium (51.4%) is 3.1 times larger compared to that determined for the test specimen tested in air. The recommended loading rate is 20 g/min. The BC structure changes during tension: after testing the BC fibers line up along the load vector and thus structured bacterial cellulose acquires the anisotropic properties.
About the Authors
D. S. GolubevRussian Federation
Dmitrii S. Golubev1,2,
Ul. Sotsialisticheskaya 1, Biisk, 659322; Ul. Imeni Geroya Sovetskogo Soyuza Trofimova, 27, Biisk, 659305N. V. Bychin
Russian Federation
Nikolai V. Bychin
Ul. Sotsialisticheskaya 1, Biisk, 659322
V. V. Budaeva
Russian Federation
Vera V. Budaeva
Ul. Sotsialisticheskaya 1, Biisk, 659322
E. A. Skiba
Russian Federation
Ekaterina A. Skiba
Ul. Sotsialisticheskaya 1, Biisk, 659322; Ul. Imeni Geroya Sovetskogo Soyuza Trofimova, 27, Biisk, 659305
References
1. Klemm D., Heublein B., Fink H.-P., Bohn A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material / Angewandte Chemie International Edition. 2005. Vol. 44. N 22. P. 3358 – 3393. DOI: 10.1002/anie.200460587.
2. Reiniati I., Hrymak A. N., Margaritis A. Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals / Critical Reviews in Biotechnology. 2016. Vol. 37. P. 510 – 524. DOI: 10.1080/07388551.2016.1189871.
3. Volova T. G., Shumilova A. A., Shidlovskiy I. P., Nikolaeva E. D., Sukovatiy A. G., Vasiliev A. D., Shishatskaya E. I. Antibacterial properties of films of cellulose composites with silver nanoparticles and antibiotics / Polymer Testing. 2018. Vol. 65. P. 54 – 68. DOI: 10.1016/j.polymertesting.2017.10.023.
4. Stumpf T. R., Yang X., Zhang J., Cao X. In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering / Materials Science and Engineering. 2018. Vol. 82. P. 372 – 383. DOI: 10.1016/j.msec.2016.11.121.
5. Ul-Islam M., Khan T., Park J. K. Nanoreinforced bacterial cellulose-montmorillonite composites for biomedical applications / Carbohydrate polymers. 2012. Vol. 89. N 4. P. 1189 – 1197. DOI: 10.1016/j.carbpol.2012.03.093.
6. Torgbo S., Sukyai P. Bacterial cellulose-based scaffold materials for bone tissue engineering / Applied Materials Today. 2018. Vol. 11. P. 34 – 49. DOI: 10.1016/j.apmt.2018.01.004.
7. Chakravorty S., Bhattacharya S., Chatzinotas A., Chakraborty W., Bhattacharya D., Gachhui R. Kombucha tea fermentation: Microbial and biochemical dynamics / International Journal of Food Microbiology. 2016. Vol. 220. P. 63 – 72. DOI: 10.1016/j.ijfoodmicro.2015.12.015.
8. Gladysheva E. K., Skiba E. A., Zolotukhin V. N., Sakovich G. V. Study of the Conditions for the Biosynthesis of Bacterial Cellulose by the Producer Medusomyces gisevii Sa-12 / Applied Biochemistry and Microbiology. Pleiades Publishing. 2018. Vol. 54. N 2. P. 179 – 187. DOI: 10.1134/s0003683818020035.
9. Bychin N. V., Golubev D. S., Skiba E. A. Thermogravimetric and mechanical characteristics of bacterial nanocellulose, depending on the method of obtaining nutrient media — enzymatic hydrolysates from the fruit shells of oats / Polzunov. Vestn. 2018. N 3. P. 109 – 115. DOI: 10.25712/ASTU.2072-8921.2018. 03.019 [in Russian].
10. Ebrahimi E., Babaeipour V., Khanchezar S. Effect of down-stream processing parameters on the mechanical properties of bacterial cellulose / Iranian Polymer Journal. 2016. Vol. 25. N 8. P. 739 – 746. DOI: 10.1007/s13726-016-0462-4.
11. Almeida L. R., Martins A. R., Fernandes E. M., Oliveira M. B., Correlo V. M., Pashkuleva I., Reis R. L. New biotextiles for tissue engineering: Development, characterization and in vitro cellular viability / Acta Biomaterialia. 2013. Vol. 9. N 9. P. 8167 – 8181. DOI: 10.1016/j.actbio.2013.05.019.
12. Brown E. E., Zhang J., Laborie. Never-dried bacterial cellulose/fibrin composites: preparation, morphology and mechanical properties / Cellulose. 2011. Vol. 18. N 3. P. 631 – 641. DOI: 10.1007/s10570-011-9500-8.
13. Yang Q., Ma H., Dai Z., Wang J., Dong S., Shen J., Dong J. Improved thermal and mechanical properties of bacterial cellulose with the introduction of collagen / Cellulose. 2017 Vol. 24. N 9. P. 3777 – 3787. DOI: 10.1007/s10570-017-1366-y.
Review
For citations:
Golubev D.S., Bychin N.V., Budaeva V.V., Skiba E.A. Tensile test for hydrated gel-films of bacterial cellulose. Industrial laboratory. Diagnostics of materials. 2019;85(10):64-69. (In Russ.) https://doi.org/10.26896/1028-6861-2019-85-10-64-69