Features of the X-ray microanalysis (electron probe microanalysis) of nitrogen-containing compounds
https://doi.org/10.26896/1028-6861-2019-85-11-5-18
Abstract
The goal of this study is development of the method for studying the chemical composition of natural and synthetic nitrogen-containing compounds using electron probe microanalysis (EPMA) and the use of EPMA for identification of the form of occurrence of light elements (C, N, O) in complex anions and cations. The analysis was performed using Kα lines attributed to electronic transitions from valence 2p states to internal 1s states. The characteristic features of the Kα spectra of C, N, O, which affect the correctness of the EPMA results were revealed to introduce the corrections that take into account the integrated line intensity, the effect of self-absorption of the nitrogen line and absorption of the background by nitrogen.
The method is intended for studying different nitrogen-contained samples including diamonds obtained by detonation synthesis. The surface of these samples is usually covered with a layer oxygen- and nitrogen-containing functional groups. The main problem associated with the experiment is determination of optimal conditions for excitation and registration of Kα lines. The accelerating voltage used is 10 kV, the beam current is 50 – 120 nA. In the analysis in the differential mode of recording the signal amplitude we use the same (for all samples) empirical formula to describe the shape of the background intensity curve in the vicinity of the nitrogen line. The resistance of the samples to the impact of the electron beam is increased when using a raster mode with a linear size of 20 – 40 μm and sample movement within the area ~100 × 100 μm2 (if possible with allowance for the sample size). The concentrations of the determined elements were calculated using the PAP program with B. L. Henke absorption coefficients. The detection limits of carbon, oxygen and nitrogen at a current of 80 nA were 0.33, 0.46 and 0.86 wt.%, respectively.
About the Authors
I. M. KulikovaRussian Federation
Inna M. Kulikova
15 Veresaeva st., Moscow, 121357
O. A. Nabelkin
Russian Federation
Oleg A. Nabelkin
15 Veresaeva st., Moscow, 121357
Yu. G. Lavrent’ev
Russian Federation
Yury G. Lavrent’ev
3 prosp. Akademika Koptuga, Novosibirsk, 630090
V. A. Ivanov
Russian Federation
Vyacheslav A. Ivanov
15 Veresaeva st., Moscow, 121357
References
1. Batsanov S. S., Guriev D. L., Gavrilkin S. M., et al. On the nature of fibres grown from nanodiamond colloids / Mater. Chem. Phys. 2016. Vol. 173. P. 325 – 332.
2. Tomchuk O., Volkov D., Bulavin L., et al. Structural characteristics of aqueous dispersions of detonation nanodiamond and their aggregate fractions as revealed by small-angle neutron scattering / J. Phys. Chem. C. 2015. Vol. 119. N 1. P. 794 – 802.
3. Kulakova I. I. Chemistry of a surface of nanodiamonds / Fiz. Tv. Tela. 2004. Vol. 46. N 4. P. 621 – 628 [in Russian].
4. Kulikova I. M., Nabelkin O. A. Determination of light elements C, N, O in various minerals and synthetic compounds using X-ray microanalysis / Zavod. Lab. Diagn. Mater. 2019. Vol. 85. N 3. P. 5 – 13 [in Russian].
5. Bastin G. F., Heijligers H. J. M. Quantitative Electron Probe Microanalysis of Boron / J. Solid State Chem. 2000. Vol. 154. P. 177 – 187.
6. Kulikova I. M., Barinskii R. L., Rudnev V. V., et al. Microprobe research of the chemical composition of different valence ions in samples of ludwigite and pinakiolite / Dokl. RAN. 1999. Vol. 367. N 3. P. 394 – 396 [in Russian].
7. Bastin G. F., Heijligers H. J. M. Quantitative Electron Probe Microanalysis of Carbon in binary Carbides. Parts I and II / X-Ray Spectrom. 1986. Vol. 15. N 2. P. 135 – 150.
8. Bastin G. F., Heijligers H. J. M. Quantitative Electron Probe Microanalysis of Ultra Light Elements / J. Microsc. Spectr. Electron. 1986. Vol. 11. P. 215 – 228.
9. Bastin G. F., Heijligers H. J. M. Quantitative Electron Probe Microanalysis of Oxygen. — Eindhoven, Netherlands: University of Technology, 1989. — 165 p.
10. Bastin G. F., Heijligers H. J. M. Quantitative Electron Probe Microanalysis of Nitrogen. — Eindhoven, Netherlands: University of Technology, 1988. — 137 p.
11. Blokhin M. A. Physics of X-rays. — Moscow: Gos. izd. tekhn.-teor. lit., 1957. — 518 p. [in Russian].
12. Quantitative electron-probe microanalysis / V. B. Scott and G. Love, Eds. — Ellis Horwood, 1983. — 345 p.
13. Bearden J. A. X-Ray Wavelengths / Rev. Mod. Phys. 1967. Vol. 19. N 1. P. 78 – 138.
14. Mazalov L. N., Fedorenko A. D., Ovcharenko V. I., et al. XPS spectra of free nitroxyl radicals and their electronic structure / J. Struct. Chem. 2011. Vol. 52. Suppl. 1. P. 102 – 108.
15. Miklin M. B. Electron. energy structure of crystal line alkali nitrates — review / Vestn. Kemerov. Gos. Univ. 2014. Vol. 3. N 3(59). P. 234 – 238 [in Russian].
16. Freund H. J., Slaughter A. R., Ballina S. M., et al. Comparison of core-hole excitation spectra of organic donor/acceptor molecules in the vapor and condensed phases: p-Nitroaniline, 2-amino-6-nitronaphthalene, and 1-amino-4-nitronaphthalene / J. Chem. Phys. 1984. Vol. 81. N 6. P. 2535 – 2555.
17. Henke B. L., Lee P., Tanaka T. J., et al. Low-energy X-ray interaction coefficients: photoabsorption, scattering, and reflection / Atomic Data and Nuclear Data Tables. 1982. Vol. 27. P. 1 – 144.
18. Sivkov V. N., Vinogradov A. S. The Ostcillator Strength of the Πg Shape Resonance in the Absorption K-spectrum of a Nitrogen Molecule / Opt. Spectrosc. 2002. Vol. 93. N 3. P. 395 – 398.
19. Nekipelov S. V., Vinogradov A. S., Sivkov V. N. Regularities in oscillator strength distributions of second row atoms in ultra soft X-Ray range spectrum / Izv. Komi Nauch. Tsentra UrO RAN. 2011. N 2(6). P. 12 – 18 [in Russian].
20. Pouchou J.-L., Pichoir F. Quantitative analysis of homogeneous or stratified micro volumes applying the model «PAP» / K. F. J. Heinrich and Dale E. Newbury, Eds. Electron Probe Quantitation. — N.Y.: Plenum Press, 1991. P. 31 – 59.
Review
For citations:
Kulikova I.M., Nabelkin O.A., Lavrent’ev Yu.G., Ivanov V.A. Features of the X-ray microanalysis (electron probe microanalysis) of nitrogen-containing compounds. Industrial laboratory. Diagnostics of materials. 2019;85(11):5-18. (In Russ.) https://doi.org/10.26896/1028-6861-2019-85-11-5-18