Changes in the microstructure and optical properties of doped sodium-calcium silicate glass upon secondary heat treatment
https://doi.org/10.26896/1028-6861-2019-85-11-19-25
Abstract
The phase separation in Na2O-CaO-SiO2 system containing four different microcomponents (Fe2O3, P2O5, Ag, Au) is studied. Two glass samples of close composition have been synthesized with the same set of the microcomponents and different content of gold and silver. Both glass samples have been melted in an open platinum crucible in an electric furnace at 1400°C for three hours and then poured and quenched on a cast iron plate and annealed at 520°C for one hour. Formation of the nanoparticles occurred upon secondary heat treatment at 550 – 600°C. The phase separation in the glass sample with a composition corresponding to the immiscibility limit in the NCS system occurs through formation of the core – shell type gold-silver nanoparticles, which serve as nucleation centers for the droplets of the second glass phase enriched in silica. Eventually, quartz crystallizes inside the droplets. The impact of these processes on the optical properties of the material including dichroism is discussed. The phase separation and quartz formation are confirmed by SEM and X-ray analysis data, respectively. The size of the nanoparticles was calculated from electron spectra using computer simulation. Iron in the glass samples thus obtained is in oxidation states +2 and +3, which determines the color of the glass before and after the secondary heat treatment in reflected light. The glass color in the transmitted light after the secondary heat treatment is attributed to the light absorption by nanoparticles. The dependence of the nanoparticle shape on the gold-silver ratio in glass is presented. The shape of nanoparticle is close to oblong or oblate ellipsoid within the range of the gold – silver ratios considered in the study.
About the Authors
M. N. AndreevRussian Federation
Maksim N. Andreev - Department of Chemistry.
1 bld. 3 Leninskiye Gory, Moscow, 119899
A. A. Drozdov
Russian Federation
Andrei A. Drozdov - Department of Chemistry.
1 bld. 3 Leninskiye Gory, Moscow, 119899
M. I. Kozlov
Russian Federation
Maksim I. Kozlov - Department of Chemistry.
1 bld. 3 Leninskiye Gory, Moscow, 119899
V. B. Zaitsev
Russian Federation
Vladimir B. Zaitsev - Department of Physics.
1 bld. 2 Leninskiye Gory, Moscow, 119899
S. O. limonskii
Russian Federation
Sergei O. Klimonskii - Department of Chemistry.
1 bld. 3 Leninskiye Gory, Moscow, 119899
References
1. Romero M., Rincon J. Ma., Acosta A. Effect of iron oxide content on the crystallization of a diopside glass-ceramic glaze / J. Eur. Ceram. Soc. 2002. Vol. 2. P. 883 – 890. DOI: 10.1016/S0955-2219(01)00395-8.
2. Jeoung J. -S., Poisl W. H., Weinberg M., et al. Effect of oxidation state of iron on phase separation in sodium silicate glasses / J. Am. Ceram. Soc. 2001. Vol. 84. N 8. P. 1859 – 1864. DOI: 10.1111/j.1151-2916.2001.tb00927.x.
3. Jebsen Marwedel H., Brückner R. (Hrsg.). Glastechnische Fabrikationsfehler. Pathologische Ausnahmezustände des Werkstoffes Glas und ihre Behebung, eine Brücke zwischen Wissenschaft, Technologie und Praxis. — Berlin, Heidelberg, New York: Springer Verlag, 1980. — 623 s.
4. Tomozawa M., Obara R. A. Effect of minor third components on metastable immiscibility boundaries of binary glasses / J. Am. Ceram. Soc. 1973. Vol. 56. N 3. P. 3378 – 3381. DOI: 10.1111/j.1151-2916.1973.tb12690.x.
5. Commons C. H. Past and present practice and theory of opaque glass / Am. Ceram. Soc. Bull. 1948. Vol. 27. N 9. P. 337 – 344.
6. Sitarz M., Szumera M. Crystallization of silico-phosphate glasses / J. Therm. Anal. Calorim. 2008. Vol. 91. P. 255 – 260. DOI: 10.1007/s10973-007-8374-3.
7. Abdel-Halmeed S. A. M., Marzouk M. A., Farag M. M. Effect of P2O5 and MnO2 on crystallization of magnetic glass ceramics / J. Adv. Res. 2014. Vol. 5. N 5. P. 543 – 550. DOI: 10.1016/j.jare.2013.07.001.
8. Smogor H., Cardinal T., Jubera V., et al. Effect of silver on phase separation and crystallization of niobium oxide containing glasses / J. Solid State Chem. 2009. Vol. 182. P. 1351 – 1358. DOI: 10.1016/j.jssc.2009.02.028.
9. Inman J. M., Houde-Walter S. N., Greaves G. N., et al. Structural characterisation of silver ion exchange in alumino-silicate glasses / Jpn. J. Apll. Phys. 1993. Vol. 32. P. 667 – 669. DOI: 10.7567/JJAPS.32S2.667.
10. Weyl W. A. Structure of subsurface layers and their role in glass technology / J. Non-Cryst. Solids. 1975. Vol. 19. P. 1 – 25. DOI: 10.1016/0022-3093(75)90066-6.
11. Bogaerts M., Godet St. Phase-separated soda-lime silica glass. US Patent 8,853,109 B2, Oct. 7,2014.
Review
For citations:
Andreev M.N., Drozdov A.A., Kozlov M.I., Zaitsev V.B., limonskii S.O. Changes in the microstructure and optical properties of doped sodium-calcium silicate glass upon secondary heat treatment. Industrial laboratory. Diagnostics of materials. 2019;85(11):19-25. (In Russ.) https://doi.org/10.26896/1028-6861-2019-85-11-19-25