Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Restoration of the structure of amorphous and partially crystalline alloys using cryogenic thermocycling

https://doi.org/10.26896/1028-6861-2019-85-11-37-40

Abstract

Creation of the new technologies includes the development of the materials, among which composite amorphous-nanocrystalline materials, characterized by a unique combination of the magnetic and mechanical properties (high strength, hardness, wear resistance, etc.) hold a specific position. However, their potential application is limited due to the loss of plasticity (embrittlement) which occurs relatively soon even at room temperature and cannot be restored by heat treatment of the amorphous phase. The plasticity can be restored when thermocycling is carried out in a temperature range between the temperature of liquid nitrogen (77 K) and room (295 K) temperature. This process dubbed «rejuvenation» turned out to be acceptable only for bulk samples obtained in the form of rods etc. and appeared to be entirely unsuited for ribbon samples with a thickness of 20 – 50 μm (i.e., the thickness of the absolute majority of amorphous alloys currently obtained). We present a modernized method for processing thin samples of amorphous and partially crystalline alloys using cryogenic thermocycling, which provides restoration of the amorphous structure and ductility of the samples. X-ray diffraction patterns of tape samples of Al87Ni8Gd5 alloy annealed at 170°C with a fraction of the nanocrystalline phase not exceeding 10% before and after several successive cooling-heating cycles show that with an increase in the number of cycles up to two hundred the amorphous structure of the initial sample can be completely restored.

About the Authors

G. E. Abrosimova
Institute of Solid State Physics, RAS
Russian Federation

Galina E. Abrosimova

Ul. Akademika Osipyana 2, Chernogolovka, Moscow obl., 142432


N. A. Volkov
Institute of Solid State Physics, RAS
Russian Federation

Nikita A. Volkov

Ul. Akademika Osipyana 2, Chernogolovka, Moscow obl., 142432



A. S. Aronin
Institute of Solid State Physics, RAS
Russian Federation

Aleksandr S. Aronin

Ul. Akademika Osipyana 2, Chernogolovka, Moscow obl., 142432


References

1. Chunchu V., Markandeyulu G. Magnetoimpedance studies in as quenched Fe73.5Si13.5B8CuV3–xAlNbx nanocrystalline ribbons / Appl. Phys. 2013. Vol. 113. P. 17A321. doi: 10.1063/1.4795800.

2. Guo W., Kato H. Development and microstructure optimization of Mg-based metallicglass matrix composites with in situ B2-NiTi dispersoids / Mater. Des. 2015. Vol. 83. P. 238 – 248. doi: 10.1016/j.matdes.2015.06.033.

3. Eckert J., Calin M., Yu P., et al. Al-Based Alloys Containing Amorphous and Nanostructured Phases / Rev. Adv. Mater. Sci. 2008. Vol. 18. P. 169.

4. Aronin A., Abrosimova G., Matveev D., Rybchenko O. Structure and Properties of Nanocrystalline Alloys Prepared by High Pressure Torsion / Rev. Adv. Mater. Sci. 2010. Vol. 25. P. 52.

5. Gunderov D., Kuranova N., Lukyanov A., et al. Structure and Properties of Ageing and Nonageing Alloys Ti49.4Ni50.6 and Ti50.2Ni49.8 Subjected to High Pressure Torsion / Rev. Adv. Mater. Sci. 2010. Vol. 25. P. 58 – 66.

6. Zheng Q. Design Strategies to Improve the Plasticity of Bulk Metallic Glasses / Rev. Adv. Mater. Sci. 2015. Vol. 40. P. 1 – 14.

7. Xiang R., Zhou Sh., Dong B., et al. Effect of Co addition on crystallization and magnetic properties of FeSiBPC alloys/ Progr. Nat. Sci. Mater. Int. 2014. Vol. 24. P. 649.

8. Meng F., Tsuchija K., Yokoyama Y. Reversible transition of deformation mode by structural rejuvenation and relaxation in bulk metallic glass / Appl. Phys. Lett. 2012. Vol. 101. P. 121914. doi: 10.1063/1.4753998.

9. Tong Y., Iwashita T., Dmowski W., et al. Structural rejuvenation in bulk metallic glasses / Acta Mater. 2015. Vol. 86. P. 240 – 246. doi: 10.1016/j.actamat.2014.12.020.

10. Dmowski W., Yokoyama Y., Chuang A., et al. Structural rejuvenation in a bulk metallic glass induced by severe plastic deformation / Acta Mater. 2010. Vol. 58. P. 429 – 438. doi: 10.1016/j.actamat.2009.09.021.

11. Guo W., Yamada R., Saida J. Rejuvenation and plasticization of metallic glass by deep cryogenic cycling / Intermetallics. 2018. Vol. 93. P. 141 – 147. doi: 10.1016/j.intermet.2017.11.015.

12. Tong Y., Dmowski W., Bei H., et al. Mechanical rejuvenation in bulk metallic glass induced by thermo-mechanical creep / Acta Mater. 2018. Vol. 148. P. 384 – 390. doi: 10.1016/j.actamat.2018.02.019.

13. Abrosimova G., Volkov N., Tran Van Tuan, et al. Cryogenic rejuvenation of Al-based amorphous-nanocrystalline alloys / Mater. Lett. 2019. Vol. 240. P. 150 – 152. doi: 10.1016/j.matlet.2018.12.131.

14. Abrosimova G. E., Shmytko I. M. The use of single-crystal cuvettes with the properties of an optical shutter in X-ray diffractometers / Zavod. Lab. Diagn. Mater. 2018. Vol. 84. N 6. P. 34 – 37. doi: 10.26896/1028-6861-2018-84-6-34-37 [in Russian].

15. Abrosimova G., Aronin A. Effect of the concentration of a rare-earth component on the parameters of the nanocrystalline structure in aluminum-based alloys / Physics of the Solid State. 2009. Vol. 51. P. 1765 – 1771. doi: 10.1134/S1063783409090017.

16. Abrosimova G., Aronin A., Budchenko A. Amorphous phase decomposition in Al – Ni – RE alloys / Mater. Lett. 2015. Vol. 2139. P. 194 – 196. doi: 10.1016/j.matlet.2014.10.076.


Review

For citations:


Abrosimova G.E., Volkov N.A., Aronin A.S. Restoration of the structure of amorphous and partially crystalline alloys using cryogenic thermocycling. Industrial laboratory. Diagnostics of materials. 2019;85(11):37-40. (In Russ.) https://doi.org/10.26896/1028-6861-2019-85-11-37-40

Views: 536


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)