Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Study of the microstructure and particles of vanadium (III) oxide, vanadium (V) oxide and lithium aluminate powders

https://doi.org/10.26896/1028-6861-2020-86-1-32-37

Abstract

Powder materials are widely used in the manufacture of electrochemical elements of thermal chemical sources of current. Electrochemical behavior of the powders depends on the shape and size of their particles. The results of the study of the microstructure and particles of the powders of vanadium (III), (V) oxides and lithium aluminate obtained by transmission electron and atomic force microscopy, X-ray diffraction and gas adsorption analyses are presented. It is found that the sizes of vanadium (III) and vanadium (V) oxide particles range within 70 – 600 and 40 – 350 nm, respectively. The size of the coherent-scattering regions of the vanadium oxide particles lies in the lower range limit which can be attributed to small size of the structural elements (crystallites). An average volumetric-surface diameter calculated on the basis of the surface specific area is close to the upper range limit which can be explained by the partial agglomeration of the powder particles. Unlike the vanadium oxide particles, the range of the particle size distribution of the lithium aluminate powder is narrower — 50 – 110 nm. The values of crystallite sizes are close to the maximum of the particle size distribution. Microstructural analysis showed that the particles in the samples of vanadium oxides have a rounded (V2O3) or elongated (V2O5) shape; whereas the particles of lithium aluminate powder exhibit lamellar structure. At the same time, for different batches of the same material, the particle size distribution is similar, which indicates the reproducibility of the technologies for their manufacture. The data obtained can be used to control the constancy of the particle size distribution of powder materials.

About the Authors

Valeria A. Brodskaya
Russian Federal Nuclear Center — All-Russia Research Institute of Experimental Physics (RFNC-VNIIÉF)
Russian Federation
37, ul. Mira, Sarov, Nizhegorodskaya obl., 607190


Oksana A. Molkova
Russian Federal Nuclear Center — All-Russia Research Institute of Experimental Physics (RFNC-VNIIÉF)
Russian Federation
37, ul. Mira, Sarov, Nizhegorodskaya obl., 607190


Kira B. Zhogova
Russian Federal Nuclear Center — All-Russia Research Institute of Experimental Physics (RFNC-VNIIÉF)
Russian Federation
37, ul. Mira, Sarov, Nizhegorodskaya obl., 607190


Inga V. Astakhova
Russian Federal Nuclear Center — All-Russia Research Institute of Experimental Physics (RFNC-VNIIÉF)
Russian Federation
37, ul. Mira, Sarov, Nizhegorodskaya obl., 607190


References

1. Yan Yan, Bing Li, Wei Guo, Huan Pang, Huaiguo Xue. Vanadium based materials as electrode materials for high performance supercapacitors / J. Power Sources. 2016. Vol. 329. P. 148 – 169.

2. Cheng Y., Shao Y., Raju V., et al. Molecular storage of Mg ions with vanadium oxide nanoclusters / Advanced Functional Materials. 2016. N 26(20). P. 3446 – 3453.

3. Deng X., Xu Y., An Q., et al. Manganese ion pre-intercalated hydrated vanadium oxide as a high-performance cathode for magnesium ion batteries / J. Materials Chemistry A. 2019. N 7(17). P. 10644 – 10650.

4. Masset P., Schoeffert S., Poinso J.-Y., Poignet J.-C. Retained molten salt electrolytes in thermal batteries / J. Power Sources. 2005. Vol. 139. P. 356 – 365.

5. Kropachev A. N., Kalabskii I. S., Abdeli A. A. New trends in lithium aluminates application / Tekhnol. Metallov. 2019. N 8. P. 2 – 8 [in Russian].

6. Kinoshita K., Sim J., Ackerman J. Preparation and characterization of lithium aluminate / Mat. Res. Bull. 1978. Vol. 13. P. 445 – 455.

7. Takizawa K., Hagiwara A. The transformation of LiAlO2 crystal structure in molten Li/K carbonate. / J. Power Sources. 2002. Vol. 109. P. 127 – 135.

8. Vorobieva V. N., Astafiev G. V. Methods of analysis of oil, oil products, additives, catalysts, adsorbents. — Moscow: Khimiya, 1967. — 430 p. [in Russian].

9. Gavrilova N. V., Nazarov V. V., Yarovaya O. V. Microscopic methods of disperse materials particle size determination. — Moscow: RKhTU im. D. I. Mendeleeva, 2012. — 52 p. [in Russian].

10. Gradus L. Ya. A guide for the dispersion analysis by means of microscopy. — Moscow: Khimiya, 1979. — 232 p. [in Russian].

11. Lukiyanovich V. M. Electron microscopy in physical-chemical analysis. — Moscow: Izd. RAN, 1960. — 272 p. [in Russian].

12. Larichev T. A., Titov F. V., Bodak K. A., et al. Atomic-force microscopy in nanosized particles analysis / Polzunovsky vestnik. 2010. N 3. P. 77 – 80 [in Russian].

13. Chizhov P., Levin E. The investigation of nanoobjects using X-ray diffraction, X-ray reflectometry, small-angle X-ray scattering methods. — Dolgoprudny: MFTI, 2011. — 93 p. [in Russian].

14. Gusev A. I., Kurlov A. S. Characterization of nanocrystalline materials by the size of particles (grains) / Metallofizika i noveishie tekhnologii. 2008. Vol. 30. N 5. P. 679 – 694 [in Russian].

15. Krivoglaz M. A. The theory of X-ray and thermal-neutron scattering by real crystals. — Moscow: Nauka, 1967. — 336 p. [in Russian].

16. Tymoshchuk E. I., Samoilov V. M., Tymoshchuk E. V., Smirnov V. K. Application of laser diffraction to determination of the particle size in fillers and molding powders in fine-grained graphite production / Zavod. Lab. Diagn. Mater. 2010. Vol. 76. N 5. P. 26 – 29 [in Russian].

17. Masuo Hosokawa, Kiyoshi Nogi, Makio Naito, Toyokazu Yokoyama. Nanoparticle technology handbook. — Moscow: Nauchnyi mir, 2013. — 729 p. [Russian translation].

18. Panichkina V. V., Uvarova I. V. Dispersity and specific surface testing methods of metal powders. — Kiev: Naukova Dumka, 1973. — 168 p. [in Russian].

19. Gregg S. J., Sing K. S. Adsorption, surface area and porosity. — Moscow: Mir, 1984. — 306 p. [in Russian].

20. Krushenko G. G. To a question of detection the sizes of nanopowders particles / Nanotekhnika. 2011. N 1. P. 13 – 16 [in Russian].

21. Coelho A., Cheary R. A fundamental parameters approach to X-ray line-profile fitting / J. Appl. Cryst. 1992. Vol. 25. P. 109 – 121.

22. Coelho A., Cheary R. Axial divergence in a conventional X-ray powder diffractometer. I. Theoretical foundations / J. Appl. Cryst. 1998. Vol. 31. P. 851 – 861.

23. Coelho A., Cheary R. Axial divergence in a conventional X-ray powder diffractometer. II. Realization and evaluation in a fundamental-parameter profile fitting procedure / J. Appl. Cryst. 1998. Vol. 31. P. 862 – 868.

24. JCPDS. Search Manual Hanawalt Method. Inorganic. — Swarthmore, Pennsylvania, USA, 1982.


Review

For citations:


Brodskaya V.A., Molkova O.A., Zhogova K.B., Astakhova I.V. Study of the microstructure and particles of vanadium (III) oxide, vanadium (V) oxide and lithium aluminate powders. Industrial laboratory. Diagnostics of materials. 2020;86(1):32-37. (In Russ.) https://doi.org/10.26896/1028-6861-2020-86-1-32-37

Views: 582


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)