Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Study of the structural degradation of steel 15Kh5M upon continuous duty

https://doi.org/10.26896/1028-6861-2020-86-1-38-43

Abstract

Structural degradation of the material upon long-term thermal and force impacts is a complex process which includes migration of the grain boundaries, diffusion of the active elements of the external and technological environment, hydrogen embrittlement, aging, grain boundary corrosion and other mechanisms. Application of the fractal and multifractal formalism to the description of microstructures opens up wide opportunities for quantitative assessment of the structural arrangement of the material, clarifies and reveals new aspects of the known mechanisms of structural transformations. Multifractal parameterization allows us to study the processes of structural degradation from the images of microstructures and identify structural changes that are hardly distinguishable visually. Any quantitative structural indicator can be used to calculate the multifractal spectra of the microstructure, but the most preferable is that provides the maximum range of variation in the numerical values of the multifractal components. The results of studying structural degradation of steel 15Kh5M upon continuous duty are presented. It is shown that structural degradation of steel during operation under high temperatures and stresses is accompanied by enlargement of the microstructural objects, broadening of the grain boundaries and allocation of the dispersed particles which are represented as point objects in the images. The processes of structural degradation lead to an increase in the range of changes in the components of the multifractal spectra. High values of complex indicators of structural arrangement indicate to an increase in heterogeneity and randomness at the micro-scale level, but at the same time, to manifestation of the ordered combinations of individual submicrostructures. Those structural transformations adapt the material to external impacts and provide the highest reliability and fracture resistance of the material.

About the Authors

Vladimir A. Kim
Komsomol’sk-on-Amur State University
Russian Federation
27, pr. Lenina, Komsomol’sk-na-Amure, Khabarovsk kray, 681013


Valeriya V. Lysenko
Komsomol’sk-on-Amur State University
Russian Federation
27, pr. Lenina, Komsomol’sk-na-Amure, Khabarovsk kray, 681013


Anna A. Afanaseva
Komsomol’sk-on-Amur State University
Russian Federation
27, pr. Lenina, Komsomol’sk-na-Amure, Khabarovsk kray, 681013


Khasan I. Turkmenov
Tashkent Institute of Irrigation and Mechanization Engineers Agriculture
Uzbekistan
39, ul. Karu Niyazova, Tashkent, 100000


References

1. Schastlivtsev V. M., Tabachnikova T. I., Tereshchenko N. A., Yakovleva I. L. Degradation of pipe steel structure during long-term operation in contact with hydrogen sulfide medium / Fiz. Met. Metalloved. 2011. Vol. 111. N 3. P. 290 – 303 [in Russian].

2. Nechaev Yu. S. Physical complex problems of aging, embrittlement and destruction of metal materials of hydrogen energy and main pipelines / Usp. Fiz. Nauk. 2008. Vol. 178. N 7. P. 709 – 726 [in Russian].

3. Kim V. A., Muravyev V. I., Lukyanov S. I., Butin A. V. Corrosion processes and service life of technological pipelines of ELOU-AVT-3 installation / Khim. Neftegaz. Oborud. 2012. N 11. P. 35 – 38 [in Russian].

4. Hertzberg R. W. Deformation and fracture of structural materials. — Moscow: Metallurgiya, 1989. — 576 p. [Russian translation].

5. Ivanova V. S., Balankin A. S., Bunin I. Zh., Oksogoev A. A. Synergetics and fractals in materials science. — Moscow: Nauka, 1994. — 382 p. [in Russian].

6. Balakhonov R. R., Bolesta A. V., Bondar M. N., et al. Surface layers and internal interfaces in heterogeneous materials. — Novosibirsk: SB RAS, 2006. — 520 p. [in Russian].

7. Kim V. A., Petrov V. V., Butin A. V., Belova I. V., Shpileva A. A. Quantitative Structure-and-Energy Analysis of Heat Treatment of Structural Steel / Metal Science and Heat Treatment. 2010. Vol. 52. N 3 – 4. P. 163 – 165.

8. Kim V. A., Belova I. V., Boutin A. V. Kinetics of structural of hardened steel 15Kh5M during tempering / Modern materials and technologies. 2013. N 1. P. 126 – 131.

9. Limankin V. V., Kim V. A., Marin B. N., Sukhoplyuev V. A., Marin S. B., Shpilev A. M., Dmitriev E. A. Quantitative assessment of grain structure of structural steels under plastic deformation and recrystallization annealing / Uch. Zap. KnAGTU. 2012. N II-1(10). P. 81 – 88 [in Russian].

10. Kim V. A., Yakubov Ch. F., Shchelkunov E. B., Samar E. V. Investigation of adhesion-active surface structures in high-speed steel R6M5 / Zavod. Lab. Diagn. Mater. 2018. Vol. 84. N 12. P. 40 – 44 [in Russian].

11. Vstovsky G. V., Kolmakov A. G., Bunin I. Zh. Introduction to multifractal parameterization of material structures. — Moscow – Izhevsk: Regulyarnaya i khaoticheskaya dinamika, 2001. — 116 p. [in Russian].

12. Bozhokin S. V., Parshin D. A. Fractals and multifractals. — Izhevsk: Regulyarnaya i khaoticheskaya dinamika, 2001. — 128 p. [in Russian].

13. Kim V. A., Bashkov O. V., Popkova A. A. Technique of digital image processing of aluminum alloys microstructure in MATLAB environment / Zavod. Lab. Diagn. Mater. 2013. Vol. 79. N 10. P. 34 – 40 [in Russian].

14. Kim V. A., Evdokimova R. V., Zolotoreva S. V., Popkova A. A., Yoshida M. Statistical Evaluation of Quantitative Metallography / Uch. Zap. KnAGTU. 2013. N II-1(14). P. 76 – 82 [in Russian].


Review

For citations:


Kim V.A., Lysenko V.V., Afanaseva A.A., Turkmenov Kh.I. Study of the structural degradation of steel 15Kh5M upon continuous duty. Industrial laboratory. Diagnostics of materials. 2020;86(1):38-43. (In Russ.) https://doi.org/10.26896/1028-6861-2020-86-1-38-43

Views: 843


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)