Features of sodium determination in dilute mixed solutions with phenylalanine by flame photometry
https://doi.org/10.26896/1028-6861-2020-86-1-13-18
Аннотация
Flame spectrophotometry is one of the main methods for determining alkali and alkaline earth metals in solutions. Chemical analysis by the flame photometric method have become of great importance for estimation of trace elements content and for work on small quantities of sample. The most important disadvantages of flame spectrophotometry are different types of interference (spectral, chemical, and physical). The paper considers mainly the physical interference which directly relates to the state of the sample itself and includes solution temperature, viscosity, surface tension, and vapor pressure. These effects are interdependent and not easily isolated for study. The addition of a substance increases the viscosity of the solution, which affects aerosol formation, transport, droplet size distribution, evaporation rate and flame temperature. All that leads to a decrease in the intensity of light emission. In the present article, the effect of phenylalanine on the sodium determination by the flame photometric method in the field of dilute solutions was studied. A decrease in the photocurrent emission of sodium in its joint determination with phenylalanine was found. The main reason is the increase in viscosity. It leads to a reduction in the spraying rate in the analyzer and a diminution in the analytical response of the device. The systematic type of errors in determining the concentration of sodium in the presence of phenylalanine is proved.
Ключевые слова
Об авторах
Ali M. SaudРоссия
1 Universitetskaya pl., Voronezh, 394018
Mikhail A. Smagin
Россия
1 Universitetskaya pl., Voronezh, 394018
Vera I. Vasil’eva
Россия
1 Universitetskaya pl., Voronezh, 394018
Список литературы
1. Vasil’eva V. I., Vorob’eva E. A. Dynamics of the separation of amino acid and mineral salt in the stationary dialysis of solutions with an MK-40 profiled sulfo group cation exchange membrane / Russ. J. Phys. Chem. 2012. Vol. 86. N 11. P. 1726 – 1731. DOI: 10.1134/S0036024412110271.
2. Vasil’eva V. I., Goleva E. A. Selective separation of sodium ions from a mixture with phenylalanine by Donnan dialysis with a profiled sulfogroup cation exchange membrane / Russ. J. Phys. Chem. 2013. Vol. 87. N 11. P. 1925 – 1931. DOI: 10.1134/ S0036024413110216.
3. Barsukov V. I. Atomic spectral analysis. — Moscow: Mashinostroenie-1, 2005. — 132 p. [in Russian].
4. Put’Makov A. N., Zarubin I. A., Burumov I. D., Selyunin D. O. «Pavlin» Spectrometer for Flame Atomic Emission Spectrometry / Zavod. Lab. Diagn. Mater. 2015 Vol. 81. N 1. P. 105 – 108 [in Russian].
5. He Z., Lou C., Fu J., Lim M. Experimental investigation on temporal release of potassium from biomass pellet combustion by flame emission spectroscopy / Fuel. 2019. Vol. 253. P. 1378 – 1384. DOI: 10.1016/j.fuel.2019.05.133.
6. He X., Lou C., Qiao Y., Lim M. In-situ measurement of temperature and alkali metal concentration in municipal solid waste incinerators using flame emission spectroscopy / Waste Management. 2020. Vol. 102. P. 486 – 491. DOI: 10.1016/j. wasman.2019.11.015.
7. Chen M., Hsieh Y., Weng Y., Chiou R. Flame photometric determination of salinity in processed foods / Food Chem. 2005. Vol. 91. N 4. P. 1765 – 770. DOI: 10.1016/j.foodchem. 2004.10.002.
8. Hiu T. C., Spencer E. T. An Experimental Demonstration of a Multi-element Flame Photometer: Determination of Salt Concentration in Soy Sauce / Int. J. Chem. 2016. Vol. 8. N 1. P. 25 – 31. DOI: 10.5539/ijc.v8n1p25.
9. Zak A. A., Shabanova E. V., Vasil’eva I. E. New capabilities of multichannel spectrometer «Kolibri-2» for analysis of geological samples / Zavod. Lab. Diagn. Mater. 2017 Vol. 83. N 1. Part II. P. 38 – 45. DOI: 10.26896/1028-6861-2018-83-1-II-38-45 [in Russian].
10. Labounmi B., Kruanetr S., Ruengsitagoon W. Simple method for determination of sodium using photogrammetry / Isan J. Pharm. Sci. 2018. Vol. 14. N 2. P. 122 – 130.
11. Poluektov N. S. Methods of analysis by flame photometry. — Moscow: Khimiya, 1967. — 307 p. [in Russian].
12. Barsukov V. I. Flame emission and atomic absorption methods of analysis and instrumental methods of increasing their sensitivity. — Moscow: Mashinostroenie-1, 2004. — 232 p. [in Russian].
13. Barsukov V. I., Dmitriev O. S., Barsukov A. A. Possibility of theoretical accounting for effect of acids on the results of magnesium determination by flame emission photometry / Vestn. TGTU Matem. Fiz. 2016. Vol. 22. N 4. P. 666 – 673. DOI: 10.17277/vestnik.2016.04.pp.666-673 [in Russian].
14. Pohl P., Sergiel I., Stecka H. Determination and fractionation of metals in honey / Crit. Rev. Anal. Chem. 2009. Vol. 39. N 4. P. 276 – 288. DOI: 10.1080/10408340903001250.
15. Pohl P., Stecka H., Jamroz P. Fast and interference free determination of calcium and magnesium in honeys by solid phase extraction followed by flame atomic absorption spectrometry / J. Braz. Chem. Soc. 2012. Vol. 23. N 4. P. 710 – 717. DOI: 10.1590/S0103-50532012000400017.
16. Danzer K. Analytical Chemistry: Theoretical and metrological fundamentals. — Berlin – Heidelberg: Springer-Verlag, 2007. — 316 p.
17. Doerfel’ K. Statistics in analytical chemistry. — Leipzig: VEB German publishing house for basic industry, 1994. — 267 p.
18. Goleva E. A., Vasil’eva V. I., Abramova E. O., et al. Rheological and spectral properties of phenylalanine aqueous solutions / Sorbts. Khromatogr. Prots. 2018. Vol. 18. N 2. P. 190 – 196. DOI: 10.17308/sorpchrom.2018.18/499 [in Russian].
19. Gary D. C., Purnendu K. D., Kevin A. S. Analytical chemistry (7th ed.). — USA: John Wiley & Sons, 2014. — 826 p.
20. María L. F., María T. F., José M. C. Atomic Emission Spectrometry. Flame Photometry / Encyclopedia of Analytical Science (3d ed.). 2019. P. 160 – 168. DOI: 10.1016/B978-0-12- 409547-2.14533-0.
21. Khokhlova O. N., Nemchinova E. V., Nefedova T. N. The effect of sodium chloride on the non-exchange sorption of phenylalanine and tyrosine by the low-base anion exchanger AN-221 / Sorbts. Khromatogr. Prots. 2010. Vol. 10. N 5. P. 753 – 759 [in Russian].
Рецензия
Для цитирования:
Saud A.M., Smagin M.A., Vasil’eva V.I. Features of sodium determination in dilute mixed solutions with phenylalanine by flame photometry. Заводская лаборатория. Диагностика материалов. 2020;86(1):13-18. https://doi.org/10.26896/1028-6861-2020-86-1-13-18
For citation:
Saud A.M., Smagin M.A., Vasil’eva V.I. Features of sodium determination in dilute mixed solutions with phenylalanine by flame photometry. Industrial laboratory. Diagnostics of materials. 2020;86(1):13-18. https://doi.org/10.26896/1028-6861-2020-86-1-13-18