Study of the properties of carbon plastic samples formed by the infusion method
https://doi.org/10.26896/1028-6861-2020-86-3-39-43
Abstract
Traditional methods used for assessing the properties of polymer composite materials (PCM) in most cases present a generalized picture and only few of them provide more detailed information. We present the results of studying carbon fiber samples molded using the infusion method with a thickness of about 8 mm. The microhardness of the PCM matrix was measured on transverse sections in two mutually perpendicular planes, named side and end surfaces, load of a microhardness indenter being 10 g (0.1 N). The studies revealed that the microhardness of the carbon fiber matrix in depth from the front surface of the sample to opposite one varies according to a parabolic law with maximum values in the core and minimum values in the subsurface zones. Moreover, statistical calculations showed the significance of differences in the microhardness values measured in two mutually perpendicular planes. The obtained graphical dependences of the microhardness variation measured over the thickness of the samples in two mutually perpendicular planes are similar in shape, whereas the volume anisotropy coefficients are almost equal. Microscopic studies of transverse sections of the samples revealed the structure of the studied carbon fiber reinforced plastic, provided determination of the thickness of the matrix and layers of the carbon filler, as well as the layout and orientation of the carbon filler tapes. The results of microscopic studies of zones in which the matrix microhardness was measured directly are also presented along with the obtained images of thin sections with indenter prints of the microhardness tester which indicate that the measurements were carried out directly on the matrix in areas free of the filler. The use of microhardness as a differential characteristic made it possible to evaluate the properties of the matrix in each specific structural component. The results can be used in assessing the properties of molded PCM structures.
About the Authors
E. A. VeshkinRussian Federation
Evgeny A. Veshkin
34, ul. Vracha Mikhaylova, g. Ulyanovsk, 432010
V. I. Postnov
Russian Federation
Vyacheslav I. Postnov
34, ul. Vracha Mikhaylova, g. Ulyanovsk, 432010
V. V. Semenychev
Russian Federation
Valentin V. Semenychev
34, ul. Vracha Mikhaylova, g. Ulyanovsk, 432010
A. A. Barannikov
Russian Federation
Alexander A. Barannikov
34, ul. Vracha Mikhaylova, g. Ulyanovsk, 432010
References
1. Kablov E. N. Strategic directions of development of materials and technologies for their processing for the period up to 2030 / Aviats. Mater. Tekhnol. 2012. N S. P. 7 – 17 [in Russian].
2. Raskutin A. E. Development Strategy for Polymer Composite Materials / Aviats. Mater. Tekhnol. 2017. N S. P. 344 – 348. DOI: 10.18577/2071-9140-2017-0-S-344-348 [in Russian].
3. Raskutin A. E. Russian polymer composite materials of a new generation, their development and implementation in promising developed structures / Aviats. Mater. Tekhnol. 2017. N S. P. 349 – 367. DOI: 10.18577/2071-9140-2017-0-S-349-367 [in Russian].
4. Gulyaev I. N., Gunyaev G. M., Raskutin A. E. Polymer composite materials with functions of adaptation and state diagnostics / Aviats. Mater. Tekhnol. 2012. N S. P. 242 – 253 [in Russian].
5. Kablov E. N. (ed.). Armor for Buran. Materials and technologies VIAM for the ISS «Energy-Buran». — Moscow: Fond «Nauka i zhizn’», 2013. — 128 p. [in Russian].
6. Kablov E. N. (ed.). History of aeronautical materials science. VIAM — 80 years: years and people. — Moscow: VIAM, 2012. — 520 p. [in Russian].
7. Kablov E. N. (ed.). History of Aeronautical Materials Science: VIAM — 75 years of search, creativity, discoveries. — Moscow: Nauka, 2007. — 343 p. [in Russian].
8. Platonov A. A., Kogan D. I., Dushin M. I. Production of three-dimensional PCM by the method of impregnation with a film binder / Plast. Massy. 2013. N 6. P. 56 – 61 [in Russian].
9. Mostovoy A. S., Ledenev A. N. Modification of epoxy polymers with nanodispersed silicon / Fiz. Khim. Obrab. Mater. 2017. N 4. P. 61 – 66 [in Russian].
10. Aristov V. M., Aristova E. P. Influence of relaxation phenomena on the physical properties of polymeric materials / Plast. Massy. 2017. N 5 – 6. P. 3 – 6 [in Russian].
11. Aristov V. M., Aristova E. P. Effect of structural heterogeneity on the physical properties of partially crystalline polymers / Plast. Massy. 2016. N 3 – 4. P. 15 – 17 [in Russian].
12. Dubinsky S. V., Sevastyanov F. S., Safonov A. A., Abaimov S. G., Rozin N. V., Fedulov B. N. The method of calculating the determination of the strength properties of structures with regard to the formation of micro and macro pores with vacuum infusion / Kompoz. Nanostrukt. 2016. Vol. 8. N 3. P. 151 – 159 [in Russian].
13. Fedulov B. N., Safonov A. A., Kantor M. M., Lomov S. V. Simulation of thermoplastic composites calibration and evaluation of residual stress values / Kompoz. Nanostrukt. 2017. Vol. 9. N 2. P. 102 – 122 [in Russian].
14. Antyufeeva N. V., Aleksashin V. M., Stolyankov Yu. V. Modern methodological support of thermoanalytical studies of polymer composites and prepregs / Kompoz. Nanostrukt. 2014. Vol. 6. N 3. P. 176 – 184 [in Russian].
15. Kuritsyna A. D. Application of microhardness method to determine some properties of polymeric materials. — Moscow: Nauka, 1965. — 264 p. [in Russian].
16. Veshkin E. A., Postnov V. I., Semenychev V. V., Krasheninnikova E. V. The study of microhardness and sclerometric characteristics of the UP-2227N binder, hardened under various conditions / Aviats. Mater. Tekhnol. 2018. N 1. P. 39 – 45. DOI: 10.18577/2071-9140-2018-0-1-39-45 [in Russian].
17. Veshkin E. A., Postnov V. I., Semenychev V. V., Krasheninnikova E. V. Microhardness and sclerometry, as criteria for the degree of curing of the binder EDT-69N / Materialovedenie. 2018. N 10. P. 3 – 7. DOI: 10.301044/1684-579X-2018-0-10-3-7 [in Russian].
18. Veshkin E. A., Postnov V. I., Semenychev V. V., Krasheninnikova E. V., Ershov V. V. Evaluation of the kinetics of curing of polyester resin in time by standard and non-standard methods / Plast. Massy. 2018. N 11 – 12. P. 42 – 46 [in Russian].
19. Veshkin E. A., Postnov V. I., Semenychev V. V., Krasheninnikova E. V. Anisotropic properties of hardened binders / Klei. Germetiki. Tekhnol. 2018. N 8. P. 20 – 24. DOI: 10.31044/1813-7008-2018-0-8-20-24 [in Russian].
20. Kalistratova L. F., Egorova V. A. The ordering of the amorphous phase as one of the characteristics of the supramolecular structure of the amorphous-crystalline polymer / Materialovedenie. 2019. N 1. P. 3 – 8 [in Russian].
21. Kenuy M. G. Fast statistical calculations. Simplified assessment and verification methods: reference book. — Moscow: Statistika, 1979. — 69 p. [in Russian].
22. Kablov E. N. Innovative developments of FSUE «VIAM» SSC RF for the implementation of the «Strategic directions for the development of materials and technologies for their processing for the period until 2030» / Aviats. Mater. Tekhnol. 2015. N 1(34). P. 3 – 33. DOI: 10.18577/2071-9140-2015-0-1-3-33 [in Russian].
Review
For citations:
Veshkin E.A., Postnov V.I., Semenychev V.V., Barannikov A.A. Study of the properties of carbon plastic samples formed by the infusion method. Industrial laboratory. Diagnostics of materials. 2020;86(3):39-43. (In Russ.) https://doi.org/10.26896/1028-6861-2020-86-3-39-43