Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Arc atomic emission analysis of the feedstock for production of metallurgical alumina

https://doi.org/10.26896/1028-6861-2020-86-4-5-11

Abstract

The analytical capabilities of the arc atomic emission analysis for determination the impurities in kaolin clays, the feedstock for producing metallurgical alumina, were studied. The analytical lines of the elements that are most free of interferences are selected. The conditions of the analysis and parameters of the spectrometer are determined: current strength, exposure, interelectrode distance, types and parameters of electrodes, weight of the sample. The detection limits and limits of determination of the following elements are specified: Ca, Cr, Cu, Ga, Mg, Mn, Mo, Nb, Ni, Pb, Sc, Ti, V, Y, Zn, Zr, La. The limits of determination are n x 10–5n x 10–6 wt.%. A comparative analysis of the samples of kaolin clays previously analyzed by another method in the framework of inter-method comparative tests is carried out. It is shown that there are no significant discrepancies between the results obtained by both two methods.

About the Authors

E. S. Koshel
State Research and Design Institute of the Rare Metal Industry «Giredmet»
Russian Federation

Elizaveta S. Koshel

5-1 B. Tolmachevsky per., Moscow, 119017



K. V. Petrova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Kseniya V. Petrova

31 Leninsky prosp., Moscow, 119991



V. B. Baranovskaya
State Research and Design Institute of the Rare Metal Industry «Giredmet»; Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; National University of Science and Technology «MISIS»
Russian Federation

Vasilisa B. Baranovskaya

5-1 B. Tolmachevsky per., Moscow, 119017; 31 Leninsky prosp., Moscow, 119991; 4 Leninsky prosp., Moscow, 119991



Ya. V. Kuminova
National University of Science and Technology «MISIS»
Russian Federation

Yaroslava V. Kuminova

4 Leninsky prosp., Moscow, 119991



References

1. State Standard GOST 19609.1–89. Kaolin enriched. Methods for the determination of iron oxide (III). — Moscow: Izd. standartov, 1989. — 11 p. [in Russian].

2. State Standard GOST 19609.3–89. Kaolin enriched. Method for the determination of aluminum oxide (III). — Moscow: Izd. standartov, 1989. — 20 p. [in Russian].

3. State Standard GOST 19286–77. Kaolin enriched. The method for determining the particle size distribution. — Moscow: Izd. standartov, 1977. — 3 p. [in Russian].

4. Potasheva I. M., Svetov S. A. Geochemical research in archeology: ICP-MS analysis of wheel-thrown pottery samples from ancient Karelian hillforts / Trudy Karel. NTs. RAN. 2013. N 4. P. 136 – 142 [in Russian].

5. Anoshin G. N., Bobrov V. A., Tauson V. L. Chemical analysis in geology and geochemistry. — Novosibirsk: Geo, 2016. — 620 p. [in Russian].

6. Hilaire Elenga, Timothée Nsongol, Bernard Mabiala, et al. X Ray and Inductively Coupled Plasma Atomic Emission Spectroscopy Analysis of Cristallographic structure and Composition of Pavement Based Clay Materials. / Int. J. Mat. Sci. Appl. 2017. Vol. 6. N 2. P. 83 – 87. DOI: 10.11648/j.ijmsa.2017.06.02.13.

7. Ignazio Allegretta, Biancamaria Ciasca, Maria D. R. Pizzigallo, et al. A fast method for the chemical analysis of clays by total-reflection x-ray fluorescence spectroscopy (TXRF) / Appl. Clay Sci. 2019. Vol. 180. Article 105201. DOI: 10.1016/j.clay.2019.105201.

8. Chen J., Liu G., Jiang M., et al. Geochemistry of Environmentally Sensitive Trace Elements in Permian Coals from the Huainan Coalfield, Anhui, China / Int. J. Coal Geol. 2011. Vol. 88. N 1. P. 41 – 54. DOI: 10.1016/j.coal.2011.08.002.

9. Shcherbakov A. A., Solodky N. F., Viktorov V. V., et al. Physical-chemical composition of Nigneuvelskaya’s clay / Vestn. Yuzh.-Ural. Univ. Ser. Khim. 2011. N 33 (250). P. 86 – 89 [in Russian].

10. Ostapenko D. S. Application of methods of plasma spectrometry in silicate analysis / Vestn. DVO RAN. 2016. N 5(189). P. 139 – 144 [in Russian].

11. Vasilieva I. E., Shabanova E. V. Atomic emission analysis in geochemical research / Zavod. Lab. Diagn. Mater. 2012. Vol. 78. N 1. Part II. P. 14 – 24 [in Russian].

12. Zak A. A., Shabanova E. V., Vasilieva I. E. New capabilities of Multichannel Spectrometer «Kolibri-2» for analysis of geological samples / Zavod. Lab. Diagn. Mater. 2017. Vol. 83. Part II. N 1. P. 38 – 45 [in Russian].

13. Balandina N. P., Zakharova M. L. New applications of a three-phase arc and a MAES analyzer for spectral analysis of rocks / Zavod. Lab. Diagn. Mater. 2017. Vol. 83. Part II. N 1. P. 31 – 34.

14. Balandina N. P., Zakharova M. L. Method of approximate-quantitative emission spectral analysis of geological objects / Zavod. Lab. Diagn. Mater. 2015. Vol. 81. Part II. N 1. P. 29 – 35 [in Russian].

15. Sukach Yu. S., Savinova E. N., Kolesov G. M., Tyurin D. A. Arc atomic emission determination of noble metals in mineral raw materials and products of their processing / J. Anal. Chem. 2012. Vol. 67. N 10. P. 823 – 829. DOI: 10.1134/S1061934812100103.


Review

For citations:


Koshel E.S., Petrova K.V., Baranovskaya V.B., Kuminova Ya.V. Arc atomic emission analysis of the feedstock for production of metallurgical alumina. Industrial laboratory. Diagnostics of materials. 2020;86(4):5-11. (In Russ.) https://doi.org/10.26896/1028-6861-2020-86-4-5-11

Views: 605


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)