Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Study of plasma-hardened wheel steel using nanoindentation

https://doi.org/10.26896/1028-6861-2020-86-4-56-60

Abstract

The necessity and possibility of using nanoindentation in studying the physical and mechanical properties of plasma-hardened wheel steel are considered. The goal of the study is demonstration and substantiation of significant differences in the mechanical properties and behavior of the materials in nanoscale tests from those determined in traditional macroscopic tests. The method was implemented using a NanoHardnessTecter nanohardness tester. The electric field formed in the nanoscale hardness tester pressed on the indenter and the diamond tip of the indenter is immersed in the surface layer of the material under study. The characteristics of the surface layer are determined using the developed software. Knowledge of the physicomechanical characteristics of the material (hardness, Young’s modulus, elastic recovery, etc.) which affect the wear resistance of the surface layers, allows one to evaluate and select the optimal surface modification technology using plasma hardening. The credibility of determination depends on the parameters of measuring equipment and compliance with the requirements to the depth of the imprint depending on the thickness of the hardened layer. The studies were carried out on the samples cut from the rim and crest of a railway wheel subjected to surface plasma hardening on a UPNN-170 installation (Russia). It is shown that the hardness (according to Vickers HV and H) of the rim is greater, and Young’s modulus, on the contrary, is less than the corresponding characteristics of the crest. Moreover, the wear resistance of hardened structural steel increases after nanostructural friction treatment.

About the Authors

A. T. Kanaev
Seifullin agrotechnical university
Kazakhstan

Amangeldy T. Kanaev

62 Zhenis prosp., Nur-Sultan, 010011



Z. M. Ramazanova
National Center for Space Research and Technology
Kazakhstan

Zhanat M. Ramazanova

11 ul. Kazhymukana, Nur-Sultan, 010011



S. K. Biizhanov
Seifullin agrotechnical university
Kazakhstan

Serik K. Biizhanov 

62 Zhenis prosp., Nur-Sultan, 010011



References

1. Firstov S. A., Gorban V. F., Pechkovsky E. P. Establishment of limit values of hardness, elastic deformation and the corresponding stress of materials by the method of automatic indentation / Materialovedenie. 2008. N 8. P. 15 – 21 [in Russian].

2. Makarov A. V., Pozdeeva N. A., Savrai R. A. Improving the wear resistance of hardened structural steel by nanostructural friction treatment / Trenie Iznos. 2012. Vol. 33. N 6. P. 444 – 455 [in Russian].

3. Gogolinsky K. V., Lvova N. A., Useinov A. S. The use of scanning probe microscopes and nanosolid testers to study the mechanical properties of solid materials at the nanoscale / Zavod. Lab. Diagn. Mater. 2007. Vol. 73. N 6. P. 28 – 36 [in Russian].

4. Tsui T., Pharr G., Oliver W., Bhatin C., White R., Anders S., Anders A., Brown I. Nanoidentation and nanoscratching of hard carbon coatings for magnetic disks / Mater. Res. Soc. Symp. Proc. 383. 1995. P. 447 – 452.

5. Leyland A., Matthews A. On the significance of the H/E ratio in wear control: a nanocomposite coatings approach to optimized tribological behaviour / Wear. 2000. Vol. 246. N 1 – 2. P. 1 – 11.

6. Chikova O. A., Shishkina E. V., Petrova A. N., Brodova I. G. Measurement by hard nanoindentation of hardness of submicrocrystalline industrial aluminum alloys obtained by dynamic pressing / Fiz. Met. Metalloved. 2014. Vol. 115. N 5. P. 555 – 560 [in Russian].

7. Golovin Yu. I., Ivolgin V. I., Korenkov V. V., Korenkova N. V., Ryabko R. I. Determination of the complex of mechanical properties of materials in nanovolumes by nanoindentation methods / Condens. Sredy Mezhfaz. Granitsy. 2001. Vol. 3. N 2. P. 122 – 135 [in Russian].

8. Goldstein M. I., Litvinov V. S., Bronfin B. M. Metallophysics of High-Durable Alloys. — Moscow: Metallurgiya, 1986. — 310 p. [in Russian].

9. Sosnin N. A., Ermakov S. A., Topolyansky P. A. Plasma technology. — St. Petersburg: Polytekhn. Univ., 2013. — 403 p. [in Russian].

10. Oliver W. C., Pharr G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments / J. Mat. Res. 1992. Vol. 7. N 6. P. 1564 – 1583.

11. Golovin Yu. I. Nanoindentation and mechanical properties of materials in a nanoscale (review) / Fiz. Tv. Tela. 2008. Vol. 50. N 12. P. 1113 – 2142 [in Russian].

12. Kanaev A. T., Orynbekov D. R., Kanaev A. A., Taimanova G. K. Improving the wear resistance and contact fatigue strength of wheel steel by plasma hardening / Vestnik ENU. 2015. N 4(107). P. 179 – 205 [in Russian].

13. Kanaev A. T., Alekseev S. V., Palchun B. G. Modernization of the structure of the surface layer of structural steel by a plasma jet / Vestn. Nauki Kazakh. Agrotekhn. Univ. 2015. N 3(86). P. 78 – 86 [in Russian].

14. Rybin V. V., Malyshevsky V. A., Khlusova E. I. Technology for creating structural nanostructured steels / Metalloved. Term. Obrab. Met. 2008. N 6(648). P. 3 – 7 [in Russian].

15. Kozlov E. V., Popova N. A., Koneva N. A. Fragmented structure formed in bcc steels during deformation / Izv. RAN. Fiz. Ser. 2004. Vol. 68. N 10. P. 1419 – 1427 [in Russian].

16. Tushinsky L. I. Structural theory of structural strength of materials. — Novosibirsk: NGTU, 2004. — 400 p. [in Russian].

17. Urtsev V. N., Gornostyrev Yu. N., Kornilov V. L., Shmanov A. V. Nanoengineering in the steel industry / Stal’. 2012. N 2. P. 130 – 131 [in Russian].


Review

For citations:


Kanaev A.T., Ramazanova Z.M., Biizhanov S.K. Study of plasma-hardened wheel steel using nanoindentation. Industrial laboratory. Diagnostics of materials. 2020;86(4):56-60. (In Russ.) https://doi.org/10.26896/1028-6861-2020-86-4-56-60

Views: 567


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)