A machine for real-time estimation of the tribological characteristics of materials
https://doi.org/10.26896/1028-6861-2020-86-4-61-65
Abstract
A reciprocating friction machine Tribal-T intended for automated quality control of the rubbing surfaces of tribopairs is described. The distinctive feature of the machine consists in implementation of the forced relative motion due to the frictional interaction of the rubbing surfaces fixed on the drive and conjugate platforms. Continuous processing of the signals from displacement sensors is carried out under conditions of continuous recording of mutual displacements of loaded tribopairs using classical approaches of the theory of automatic control to identify the tribological characteristics. The machine provides consistent visual real time monitoring of the parameters. The MATLAB based computer technologies are actively used in data processing. The calculated tribological characteristics of materials, i.e., the dynamic friction coefficient, damping coefficient and measure of the surface roughness, are presented. The tests revealed that a Tribal-T reciprocating friction machine is effective for real-time study of the aforementioned tribological characteristics of materials and can be used for monitoring of the condition of tribo-nodes of machines and mechanisms.
About the Authors
M. V. AbramchukRussian Federation
Michail V. Abramchuk
49 Kronverksky Pr., St. Petersburg, 197101
R. V. Pechenko
Russian Federation
Roman V. Pechenko
49 Kronverksky Pr., St. Petersburg, 197101
K. A. Nuzhdin
Russian Federation
Kirill A. Nuzhdin
49 Kronverksky Pr., St. Petersburg, 197101
V. M. Musalimov
Russian Federation
Viktor M. Musalimov
49 Kronverksky Pr., St. Petersburg, 197101
References
1. Krioni N. K., Mingazhev A. D., Novikov A. V., Bekishev R. R. Operational properties of brush face seal of turbine blade of gas turbine installations / Trenie Smazka Mashin. Mekhanizm. 2014. N 5. P. 36 – 38 [in Russian].
2. Korolev A. V., Korolev A. A. Friction Machine for Accelerated Wear Tests of Frictional Rolling Elements / Journal of Friction and Wear. 2017. Vol. 38. N 1. P. 77 – 81. DOI: 10.3103/S1068366617010068.
3. Makhkamov K. H. Energy Analysis of Wear of Sliding Friction Units / Journal of Friction and Wear. 2017. Vol. 38. N 2. P. 168 – 172. DOI: 10.3103/S1068366617020143.
4. Kozochkin M. P. Study of Frictional Contact during Grinding and Development of Phenomenological / Journal of Friction and Wear. 2017. Vol. 38. N 4. P. 333 – 337. DOI: 10.3103/S1068366617040067.
5. Markova L. V. Diagnostics of the Wear of Tribological Assemblies Using an Inductive Wear Debris Counter / Journal of Friction and Wear. 2018. Vol. 39. N 4. P. 265 – 273. DOI: 10.3103/S1068366618040104.
6. Dotsenko A. I., Buyanovskiy I. A. Fundamentals of tribotechnics. Textbook. — Moscow: Nits Infra-M, 2014. — 336 p. [in Russian].
7. Novikov A. V., Krioni N. K., Mingazhev A. D., Bekishev R. R. Rush seals for gas-dynamic installations / Set. Izd. «Neftegaz. Delo». 2014. N 4. P. 324 – 340 [in Russian]
8. RF Pat. RU2600080C1. MPK G01N 3/56 (2006.01). Device for investigating tribotechnical characteristics of materials / Ismailov G. M., Turin A. E., Vlasov Yu. A. Patent holder: Tomsk State University of Architecture and Building (TSUAB). — N 2015138515/28. appl. 09.09.2015; publ. 10.20.2016 [in Russian].
9. Nuzhdin K., Musalimov V. M. The experimental determination of the bifurcation components of friction / Procedia Engineering IET. 2017. Vol. 199. P. 1478 – 1483. DOI: 10.1016/j.proeng.2017.09.410.
10. Pechenko R. V., Nuzhdin K. A., Abramchuk M. V., Musalimov V. M. Accuracy characteristics of friction machines of reciprocal action / Izvestiya vuzov. Priborostroenie. 2019. Vol. 62. N 5. P. 442 – 448. DOI: 10.17586/0021-3454-2019-62-5-442-448 [in Russian].
11. Korayem M. H., Hoshiar A. K., Badrlou, Yoon S. J. Modeling and simulation of critical force and time in 3D manipulations using rectangular, V-shaped and dagger-shaped cantilevers / European Journal of Mechanics. A/Solids. 2016. Vol. 59. P. 333 – 343. DOI: 10.1016/j.euromechsol.2016.04.008.
12. Cabboi A., Putelat T., Woodhouse J. The frequency response of dynamic friction: enhanced rate-and-state models / Journal of the Mechanics and Physics of Solids. 2016. Vol. 92. P. 210 – 236. DOI: 10.1016/j.jmps.2016.03.025.
13. Woodhouse J., Mckay A., Putelat T. Are there reliable constitutive laws for dynamic friction? / Philosophical Transactions: Mathematical, Physical and Engineering Sciences (Series A). 2015. Vol. 373. N 2051. P. 20140401 – 20140402. DOI: 10.1098/rsta.2014.0401.
14. Weibing Teng, Xiangming Zhang, Valerie Merkle, Xiaoyi Wu. Deformation-induced mechanical anisotropy of gelatin films / Extreme Mechanics Letters. 2016. Vol. 7. P. 18 – 26. DOI: 10.1016/j.eml.2016.02.010.
15. Putelat T., Dawes J. H. P. Steady and transient sliding under rate-and-state friction / Journal of the Mechanics and Physics of Solids. 2015. Vol. 78. P. 70 – 93. DOI: 10.1016/j.jmps.2015.01.016.
16. Sacks M. S., Sun W. Multiaxial Mechanical Behavior of Biological Materials / Annual Review of Biomedical Engineering. 2003. Vol. 5. P. 251 – 284. DOI: 10.1146/annurev.bioeng.5.011303.120714.
Review
For citations:
Abramchuk M.V., Pechenko R.V., Nuzhdin K.A., Musalimov V.M. A machine for real-time estimation of the tribological characteristics of materials. Industrial laboratory. Diagnostics of materials. 2020;86(4):61-65. (In Russ.) https://doi.org/10.26896/1028-6861-2020-86-4-61-65