Development and implementation of X-ray fluorescence technique for gold determination in jewelry alloys at the analytical center of the JSC «Krastsvetmet»
https://doi.org/10.26896/1028-6861-2020-86-6-14-23
Abstract
A technique of the X-ray fluorescence analysis (XRF) based on a linear regression providing correlation between the gold content in the sample and radiation intensities of the elements of the analyzed alloy is developed at the analytical center of the JSC «Krastsvetmet» (laboratory of X-ray spectral analysis) to increase the rapidity of gold determination in gold-based alloys. The regression equation chosen by the methods including the influencing factor (contributor) and estimating correlation between the disparities and influencing factor takes into account the effect of such elements as Ag, Cu, Zn, Ni, and Pd on the gold line intensity. Virtual calibration samples (VCS) — the results of the analysis of real samples (X-ray line intensities of elements and gold values obtained by the assay method) taken from electronic database (DB) are used to form a system of linear algebraic equations (SLAE) which is to be solved for determination the desired linear regression coefficients. VCS for which the line intensities of the elements are close to those measured for the analyzed sample are selected from the database using a specific filter: the filter value is determined for each of the elements (metals) in the sample. The developed and integrated into the laboratory information system (LIMS) multi-version software (MVS) for solving SLAE includes several algorithms implemented in various programming languages. The use of the presented methodology significantly reduces the time of analysis. The error of gold determination does not exceed 0.13% which is comparable with that in the assay method.
About the Authors
I. A. KhabeevRussian Federation
Il’ya A. Khabeev
Transportny proyezd 1, Krasnoyarsk, 660123
V. A. Tsarenko
Russian Federation
Vitalii A. Tsarenko
Transportny proyezd 1, Krasnoyarsk, 660123
S. I. Khabeev
Russian Federation
Sergei I. Khabeev
Transportny proyezd 1, Krasnoyarsk, 660123
V. S. Chekhmarev
Russian Federation
Viktor S. Chekhmarev
Transportny proyezd 1, Krasnoyarsk, 660123
D. V. Gruzenkin
Russian Federation
Denis V. Gruzenkin
Transportny proyezd 1, Krasnoyarsk, 660123
References
1. Pavlinsky G. V. Fundamentals of X-Ray Physics. — Cambridge: CISP Ltd., 2008. — 245 p.
2. Smagunova A. N., Pavlinskii G. V. The Irkutsk school of X-ray spectrochemical analysis / J. Anal. Chem. 2005. Vol. 60. N 2. P. 181 – 186. DOI: 10.1007/S10809-005-0058-1.
3. Tsarenko V. A., Konontsev S. G., Khabeev I. A. X-ray spectral measurements of mass fractions of platinum, palladium and silver in gold-based alloys / Proc. of XXII International Chernyaev conference on chemistry, analytics and technology of platinum metals. 2019. P. 82 [in Russian].
4. Khabeev I. A., Miroshnichenko N. A., Blohina M. A., et al. Chemistry-X-ray fluorescence determination of small amounts of Pt, Pd, Rh Ir in technological solutions / Proc. of Analytics of Siberia and the Far East Conference. 2004. P. 70 [in Russian].
5. Zhitenko L. P., Obrezumov V. P., Bukhryakova S. K., et al. Current State and Problems of High Content Determination of Platinum Metals in Alloys and Articles (a review) / Zavod. Lab. Diagn. Mater. 2008. Vol. 74. N 8. P. 4 – 14 [in Russian].
6. Draper N. R., Smith H. Applied regression analysis. 3rd Edition. — New York: John Wiley & Sons, 1998. — 715 p.
7. Gantmacher F. R. The Theory of Matrices. — AMS Chelsea Publishing: Reprinted by American Mathematical Society, 2000. — 660 p.
8. Bronshtein I. N., Semendyaev K. A. A handbook of mathematics for engineers and students of technical colleges. — St. Petersburg: Lan’, 2009. — 608 p. [in Russian].
9. Ahmadi M., Rad B. B., Thomas M. O. Tailoring Software Development Methodologies for Reliability / J. Telecommunication, Electronic and Computer Engineering (JTEC). 2018. Vol. 10. N 3. P. 117 – 121.
10. Levkina U. S., Litvinova A. O. Increasing software reliability / Akt. Probl. Aviats. Kosmonavt. 2017. Vol. 2. N 13. P. 107 – 108 [in Russian].
11. Zavyalova O. I., Gritsenko S. N., Tynchenko S. V., Tsarev R. Yu. Optimization model for synthesis of a software system based on the consensus recovery block scheme / Sovr. probl. nauki obrazov. 2015. N 1-1. http://science-education.ru/ru/article/view?id=18871 [in Russian].
12. Kuznetsov A. S., Chentsov S. V., Tsarev R. Yu. Multistage analysis of architectural reliability and synthesis of fault-tolerant software of complex systems. — Moscow: Infra-M, 2013. — 142 p. [in Russian].
13. Gruzenkin D. V., Grishina G. V., Durmuş M. S., et al. Compensation model of multi-attribute decision making and its application to N-version software choice / Computer Science On-line Conference 2017. P. 148 – 157. DOI: 10.1007/978-3-319-57141-6_16.
14. Kotenok A. V. Implementation of multi-version voting algorithms / Sovr. Nauk. Tekhnol. 2007. N 8. P. 44 – 45 [in Russian].
15. Gruzenkin D. V., Yakimov I. A., Kuznetsov A. S., Tsarev R. Yu. N-version software diversity metric definition on the algorithm level / Fundam. Issl. 2017. N 6. P. 36 – 40 [in Russian].
16. Gruzenkin D. V., Mikhalev A. S. N-Version Software Diversity Metric Definition at the Programming Languages Level / Program. Inzh. 2019. Vol. 10. N 9 – 10. P. 384 – 390 [in Russian]. DOI: 10.17587/prin.10.384-390.
17. Mudrov A. E. Numerical methods for PCs in BASIC, Fortran, and Pascal. — Tomsk: MP «Rasko», 1991. — 270 p. [in Russian].
18. Faddeev D. K., Faddeeva V. N. Numerical methods of linear algebra. — Moscow: GIFML, 1960. — 656 p. [in Russian].
Review
For citations:
Khabeev I.A., Tsarenko V.A., Khabeev S.I., Chekhmarev V.S., Gruzenkin D.V. Development and implementation of X-ray fluorescence technique for gold determination in jewelry alloys at the analytical center of the JSC «Krastsvetmet». Industrial laboratory. Diagnostics of materials. 2020;86(6):14-23. (In Russ.) https://doi.org/10.26896/1028-6861-2020-86-6-14-23