Control of the phase composition of advanced calcium phosphates using an x-ray diffractometer with a curved position-sensitive detector
https://doi.org/10.26896/1028-6861-2020-86-6-29-35
Abstract
The results of studying the phase composition of advanced calcium phosphates Ca10(PO4)6(OH)2, β-Ca3(PO4)2, α-Ca3(PO4)2, CaHPO4 · 2H2O, Ca8(HPO4)2(PO4)4 · 5H2O using an x-ray diffractometer with a curved position-sensitive detector are presented. Optimal experimental conditions (angular positions of the x-ray tube and detector, size of the slits, exposure time) were determined with allowance for possible formation of the impurity phases during synthesis. The construction features of diffractometers with a position-sensitive detector affecting the profile characteristics of x-ray diffraction peaks are considered. The composition for calibration of the diffractometer (a mixture of sodium acetate and yttrium oxide) was determined. Theoretical x-ray diffraction patterns for corresponding calcium phosphates are constructed on the basis of the literature data. These x-ray diffraction patterns were used to determine the phase composition of the advanced calcium phosphates. The features of advanced calcium phosphates, which should be taken into account during the phase analysis, are indicated. The powder of high-temperature form of tricalcium phosphate strongly adsorbs water from the environment. A strong texture is observed on the x-ray diffraction spectra of dicalcium phosphate dihydrate. A rather specific x-ray diffraction pattern of octacalcium phosphate pentahydrate revealed the only one strong peak at small angles. In all cases, significant deviations are observed for the recorded angular positions and relative intensity of the diffraction peaks. The results of the study of experimentally obtained mixtures of calcium phosphate are presented. It is shown that the graphic comparison of experimental x-ray diffraction spectra and pre-recorded spectra of the reference calcium phosphates and possible impurity phases is the most effective method. In this case, there is no need for calibration. When using this method, the total time for analysis of one sample is no more than 10 min.
About the Authors
V. P. SirotinkinRussian Federation
Vladimir P. Sirotinkin
49, Leninsky prosp., Moscow, 119334
O. V. Baranov
Russian Federation
Oleg V. Baranov
49, Leninsky prosp., Moscow, 119334
A. Yu. Fedotov
Russian Federation
Alexandr Yu. Fedotov
49, Leninsky prosp., Moscow, 119334
S. M. Barinov
Russian Federation
Sergei M. Barinov
49, Leninsky prosp., Moscow, 119334
References
1. Pramanick A., Omar S., Nino J., Jones J. Lattice parameter determination using a curved position-sensitive detector in reflection geopmetry and application to Smx/2Ndx/2Ce1 – xO2-δ ceramics / J. Appl. Crystallogr. 2009. Vol. 42. P. 490 – 495.
2. Batchelder M., Cressey G. Rapid, accurate phase quatification of clay-bearing samples using a position-sensitive X-ray detector / Clays and Clay Minerals. 1998. Vol. 46. N 2. P. 183 – 194
3. Parilov I. V., Sidokhin A. F., Sidokhin E. F., Sirotinkin V. P. X-ray diffractometer with coordinate detector / Zavod. Lab. Diagn. Mater. 2006. Vol. 72. N 7. P. 32 – 35 [in Russian].
4. Goganov D. A., Kazanskyi B. V., Klimenskaya D. A., Klochkova I. B., Lebedev A. G., Lepik I. P., Pronichev V. A., Protasov Yu. V., Serebryakov A. S. Position-sensitive detectors for soft x-ray and their applications / Prib. Tekhn. Éksper. 2015. N 1. P. 109 – 116 [in Russian].
5. Faber J., Fawcett T. The powder diffraction file: present and future / Acta Cryst. 2002. Vol. B58. P. 325 – 332.
6. Vasiliev E. K., Nakhmanson M. S. Qualitative x-ray diffraction phase analysis. — Novosibirsk: Nauka, 1986. — 200 p. [in Russian].
7. Kraus W., Nolze G. POWDER CELL — a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns / J. Appl. Cryst. 1996. Vol. 29. P. 301 – 303.
8. Hsu L.-Y., Nordman C. E. Structures of two forms of sodium acetate, / Acta Cryst. 1983. Vol. C39. P. 690 – 694.
9. Fert A. Structure de quelques oxydes de terres rares / Bulletin de la société française de minéralogie et de cristallographie. 1962. Vol. 85. N 3. P. 267 – 270.
10. Barinov S. M., Komlev V. S. Bioceramics based on calcium phosphates. — Moscow: Nauka, 2014. — 204 p. [in Russian].
11. Yashima M., Sakai A., Kamiyama T., Hoshikawa A. Crystal structure analysis of β-Ca3(PO4)2 by neutron powder diffraction / Journal of solid state chemistry. 2003. Vol. 175. P. 272 – 277.
12. Dickens B., Brown W. E., Kruger G. J., Stewart L. M. Ca4(PO4)2O, tetracalcium diphosphate monooxide. Crystal structure and relationships to Ca5(PO4)3OH and K3Na(SO4)2 / Acta Cryst. 1973. Vol. B29. P. 2056 – 2056.
13. Fiquet G., Richet P., Montagnac G. High-temperature thermal expansion of lime, periclase. Corundum and spinel / Phys. Chem. Minerals. 1999. Vol. 27. P. 103 – 111.
14. Chessin H., Hamilton W. C. Position and thermal parameters of oxygen atoms in calcite / Acta Cryst. 1965. Vol. 18. P. 689 – 693.
15. Mathew M., Schroeder L. W., Dickens B., Brown W. E. The crystal structure of α-Ca3(PO4)2 / Acta Cryst. 1977. Vol. B33. P. 1325 – 1333.
16. Boudin S., Grandin A., Borel M. M., Leclaire A., Raveau B. Redetermination of the β-Ca2P2O7 structure / Acta Cryst. 1993. Vol. C49. P. 2062 – 2064.
17. Calvo C. The crystal structure of α-Ca2P2O7 / Inorganic Chemistry. 1968. Vol. 7. N 7. P. 1345 – 1351.
18. Dickens B., Bowen J. S., Brown W. E. A refinement of the crystal structure of CaHPO4 (Synthetic Monetite) / Acta Cryst. 1971. Vol. B28. P. 797 – 806.
19. Wilson R. M., Elliott J. C., Dowker S. E. P. Rietveld refinement of the crystallographic structure of human dental enamel apatites / Am. Mineral. 1999. Vol. 84. P. 1406 – 1414.
20. Curry N. A., Jones D. W. Crystal Structure of Brushite, Calcium Hydrogen Orthophosphate: A Neutron-diffraction Investigation / J. Chem. Soc. (A). 1971. P. 3725 – 3729.
21. Mathew M., Brown W. E., Schroeder L. W. Crystal structure of octacalcium bis(hydrogenphosphate) tetrakis(phosphate)pentahydrate, Ca8(HPO4)2(PO4)4 · 5H2O / J. Crystallogr. Spectrosc. Res. 1988. Vol. 18. N 3. P. 235 – 250.
22. Dorozhkin S. Calcium orthophosphates / J. Mater. Sci. 2007. Vol. 42. P. 1061 – 1095.
23. Raynaud S., Champion E., Bernache-Assollant D., Thomas P. Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders / Biomaterials. 2002. Vol. 23. P. 1065 – 1072.
24. Sirotinkin V. P., Fedotov A. Yu., Shamray V. F., Barinov S. M., Komlev V. S. Application of the Rietveld method for phase analysis of the synthesis products of dicalcium phosphate for bone cements / Materialovedenie. 2014. N 11. P. 47 – 50 [in Russian].
Review
For citations:
Sirotinkin V.P., Baranov O.V., Fedotov A.Yu., Barinov S.M. Control of the phase composition of advanced calcium phosphates using an x-ray diffractometer with a curved position-sensitive detector. Industrial laboratory. Diagnostics of materials. 2020;86(6):29-35. (In Russ.) https://doi.org/10.26896/1028-6861-2020-86-6-29-35