Preview

Заводская лаборатория. Диагностика материалов

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Контроль поглощения водорода никелевыми пленками, полученными при вакуумно-магнетронном напылении циркониевого сплава, методом термоЭДС

https://doi.org/10.26896/1028-6861-2020-86-8-32-37

Полный текст:

Аннотация

Для защиты материалов из циркониевых сплавов от водорода часто используют никелевые пленки, формируемые на поверхности изделий. Адсорбция водорода проходит быстрее на никеле, поскольку последний активно с ним взаимодействует. Адсорбируя водород, никель окисляется и образует защитную пленку. Цель данной работы — разработка метода контроля поглощения водорода никелевыми пленками при вакуумно-магнетронном напылении и наводороживании с помощью определения термоЭДС. Циркониевый сплав Э110 насыщали водородом при температуре 350 °C и давлении 2 атм. из газовой фазы. Нанесение покрытия осуществляли на специализированной установке «Радуга спектр». Показано, что наличие никелевой пленки существенным образом влияет на проникновение водорода в сплав. Покрытие толщиной более 2 мкм, нанесенное магнетронным напылением на поверхность циркониевого сплава с 1 % Nb, защищает сплав от проникновения водорода практически полностью. При этом величина термоЭДС зависит от концентрации водорода в материале и толщины пленки. Приведены анализ ширины гистерезиса температурной петли термоЭДС и способ определения эффективной энергии активации проводимости наводороженного материала с пленкой никеля. Полученные результаты могут быть использованы при оценке концентрации водорода в материале и, соответственно, при его коррозионной защите.

Об авторах

В. В. Ларионов
Национальный исследовательский томский политехнический университет
Россия

Виталий Васильевич Ларионов

634050, г. Томск, пр. Ленина 30



Сюй Шупэн
Национальный исследовательский томский политехнический университет
Россия
Сюй Шупэн


В. Н. Кудияров
Национальный исследовательский томский политехнический университет
Россия
Виктор Николаевич Кудияров


Список литературы

1. Pick M. A., Sonnenberg K. A. Model for atomic hydrogen-metal interactions — application to recycling, recombination and permeation / J. Nucl. Mater. 1985. Vol. 131. N 2 – 3. P. 208 – 220. DOI: 10.1016/0022-3115(85)90459-3.

2. Serra E., Benamati G., Ogorodnikova O. Hydrogen isotopes transport parameters in fusion reactor materials / J. Nucl. Mater. 1998. Vol. 255. N 2 – 3. P. 105 – 115. DOI: 10.1016/S0022-3115(98)00038-5.

3. Puls M. P. The effect of hydrogen and hydrides on the integrity of zirconium alloy components: delayed hydride cracking. — London: Springer Science & Business Media, 1991.

4. Choudhuri G., Mukherjee P., Gayathri N., Kain V., Kumar M., Srivastava D., Basu S., Mukherjee D., Dey G. Effect of heavy ion irradiation and α + β phase heat treatment on oxide of Zr – 2.5 Nb pressure tube material / J. Nucl. Mater. 2017. Vol. 489. P. 22 – 32. DOI: 10.1016/j.jnucmat.2017.03.032.

5. Wang F., Li R., Ding C., Wan J., Yu R., Wang Z. Effect of catalytic Ni coating with different depositing time on the hydrogen storage properties of ZrCo alloy / Int. J. Hydrogen Energy. 2016. Vol. 41. N 39. P. 17421 – 17432. DOI: 10.1016/j.ijhydene.2016. 07.077.

6. Chernov I., Ivanova S., Krening M., Koval N., Larionov V., Lider A., Pushilina N., Stepanova E., Stepanova O., Cherdantsev Y. Properties and structural state of the surface layer in a zirconium alloy modified by a pulsed electron beam and saturated by hydrogen / Tech. Phys. 2012. Vol. 57. N 3. P. 392 – 398. DOI: 10.1134/S1063784212030024.

7. Chernov I. P., Pushilina N. S., Berezneeva E. V., Lider A. M., Ivanova S. V. Influence of hydrogen on the properties of Zr – 1% Nb alloy modified by a pulsed electron beam / Tech. Phys. 2013. Vol. 58. P. 1280 – 1283. DOI: 10.1134/S1063784213090107.

8. Kudiiarov V. N., Larionov V. V., Tyurin Y. I. Mechanical property testing of hydrogenated zirconium irradiated with electrons / Metals. 2018. Vol. 207. N 8(4); DOI: 10.3390/met8040207.

9. Gao B., Hao S., Zou J., Wu W., Tu G., Dong C. Effect of high current pulsed electron beam treatment on surface microstructure and wear and corrosion resistance of an AZ91HP magnesium alloy / Surf. Coat. Technol. 2007. Vol. 201. N 14. P. 6297 – 6303. DOI: 10.1016/j.surfcoat.2006.11.036.

10. Herlach D., Kottler C., Wider T., Maier K. Hydrogen embrittlement of metals / Phys. B Condens. Matter. 2000. Vol. 289 – 290. P. 443 – 446. DOI: 10.1016/S0921-4526(00)00431-2.

11. Dong C., Wu A., Hao S., Zou J., Liu Z., Zhong P., Zhang A., Xu T., Chen J., Xu J., Liu Q., Zhou Z. Surface treatment by high current pulsed electron beam / Surf. Coat. Technol. 2003. Vol. 163 – 164. P. 620 – 624. DOI: 10.1016/S0257-8972(02)00657-6.

12. Proskurovsky D. I., Rotshtein V. P., Ozur G. E., Ivanov Y. F., Markov A. B. Physical foundations for surface treatment of materials with low energy, high current electron beams / Surf. Coat. Technol. 2000. Vol. 125. N 1 – 3. P. 49 – 56. DOI: 10.1016/S0257-8972(99)00604-0.

13. Zhang L., Nikitenkov N., Sutygina A., Kashkarov E., Sypchenko V., Babihina M. Hydrogen-Permeability of Titanium-Nitride (TiN) Coatings Obtained via the Plasma-Immersion Ion Implantation of Titanium and TiN Vacuum-Arc Deposition on Zr – 1% Nb Alloy / J. Surf. Invest. X-Ray. Synchrotron Neutron Tech. 2018. Vol. 12. N 4. P. 705 – 709. DOI: 10.1134/S1027451018040080.

14. Li E. V., Koteneva M. V., Nikulin S. A., Rozhnov A. B., Belov V. A. Structure and fracture of zirconium alloys after oxidation under various conditions / Met. Sci. Heat Treat. 2015. Vol. 57. N 3 – 4. P. 215 – 221. DOI: 10.1007/s11041-015-9864-8.

15. Muboyadzhyan S. A., Lutsenko A. N., Aleksandrov D. A., Gorlov D. S., Zhuravleva P. L. Investigation of the properties of nanolayer erosion-resistant coatings based on metal carbides and nitrides / Metally. 2011. N 4. P. 91 – 96 [in Russian].

16. Cheng H., Deng X., Li S., Chen W., Chen D., Yang K. Design of PC based high pressure hydrogen absorption/desorption apparatus / Int. J. Hydrogen Energy. 2007. Vol. 32. N 14. P. 3046 – 3053. DOI: 10.1016/j.ijhydene.2007.01.010.

17. Rotshtein V., Ivanov Y., Markov A., Proskurovsky D., Karlik K., Oskomov K., Uglov B., Kuleshov A., Novitskaya M., Dub S., Pauleau Y., Shulepov I. Surface alloying of stainless steel 316 with copper using pulsed electron-beam melting of film-substrate system / Surf. Coat. Technol. 2006. Vol. 200. N 22 – 23. P. 6378 – 6383. DOI: 10.1016/j.surfcoat. 2005.11.007.

18. Begrambekov L. B., Evsin A. E., Grunin A. V., et al. Irradiation with hydrogen atoms and ions as an accelerated hydrogenation test of zirconium alloys and protective coatings / Int. J. Hydrogen Energy. 2019. Vol. 44. N 31. P. 17154 – 17162. DOI: 10/1016/j.ijhydene.2019.04. 198.

19. Voskuilen T., Zheng Y., Pourpoint T. Development of a Sievert apparatus for characterization of high pressure hydrogen sorption materials / Int. J. Hydrogen Energy. 2010. Vol. 35. N 19. P. 10387 – 10395. DOI: 10.1016/j.ijhydene.2010.07.169.

20. Kashkarov E. B., Nikitenkov N. N., Sutygina A. N., Bezmaternykh A. O., Kudiiarov V. N., Syrtanov M. S., Pryamushko T. S. Hydrogenation behavior of Ti-implanted Zr-1Nb alloy with TiN films deposited using filtered vacuum arc and magnetron sputtering / Appl. Surf. Sc. 2018. Vol. 432. P. 207 – 213. DOI: 10.1016/j.apsusc.2017.04.035.

21. Dombrovskya M. A., Lisienko D. G., Shafar O. Y. Determination of hafnium in zirconium materials / Zavod. Lab. Diagn. Mater. 2019. Vol. 85. N 1. Part II. P. 56 – 59. DOI: 10.26896/ 1028-6861-2019-85-1-II-56-59 [in Russian].

22. Plikhunov V. V., Grigorovich K. V., Petrov L. M., Arsenkin A. M., Sprygni G. S., Khimyuk Y. Y., Demin K. Y., Semenov V. D. The use of the method of atomic emission spectrometry with a glow discharge for the quantitative layer-by-layer analysis of steel 12X18H10T after the technological impact of argon plasma flows / Zavod. Lab. Diagn. Mater. 2017. Vol. 83. N 3. P. 5 – 11 [in Russian].

23. Abramov N. F., Bezrukov A. V., Volpyan O. D., Rim Y. A. Effect of power supply of a magnetron sputtering system on the properties of deposited TiO2 films / Zavod. Lab. Diagn. Mater. 2017. Vol. 83. N 4. P. 31 – 37 [in Russian].

24. Lider A. M., Larionov V. V., Syrtanov M. S. Hydrogen concentration measurements at titanium layers by means of thermo-EMF / Key Eng. Mater. 2016. Vol. 683. P. 199 – 202. DOI: 10.4028/www.scientific.net/KEM.683.199.

25. Askhatov A., Larionov V., Kudiyarov V. Analysis of hydrogenated zirconium alloys irradiated with gamma-rays / In: MATEC Web of Conferences. 2017. Vol. 102. P. 1003 – 1006. DOI: 10.1051/matecconf/201710201003.

26. Sanders D., Anders A. Review of cathodic arc deposition technology at the start of the new millennium / Surf. Coat. Tech. 2000. Vol. 133 – 134. P. 78 – 90. DOI: 10.1016/S0257- 8972(00)00879-3.

27. Ryabchikov A. I., Stepanov I. B. Equipment and methods for hybrid technologies of ion beam and plasma surface materials modification / Surf. Coat. Tech. 2009. Vol. 203. N 17 – 18. P. 2784 – 2787. DOI: 10.1016/j.surfcoat.2009.02.126.


Для цитирования:


Ларионов В.В., Шупэн С., Кудияров В.Н. Контроль поглощения водорода никелевыми пленками, полученными при вакуумно-магнетронном напылении циркониевого сплава, методом термоЭДС. Заводская лаборатория. Диагностика материалов. 2020;86(8):32-37. https://doi.org/10.26896/1028-6861-2020-86-8-32-37

For citation:


Larionov V.V., Shupeng X., Kudiyarov V.N. Control of hydrogen absorption by nickel films obtained upon magnetic spraying of zirconium alloy using the thermoEMF method. Industrial laboratory. Diagnostics of materials. 2020;86(8):32-37. (In Russ.) https://doi.org/10.26896/1028-6861-2020-86-8-32-37

Просмотров: 52


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)