X-ray diffraction layer-by-layer analysis of tungsten carbide-based hard alloys
https://doi.org/10.26896/1028-6861-2020-86-8-38-42
Abstract
Improvement of the physical and mechanical properties of hard alloys based on WC – Co widely used in manufacturing of structural and tool products nowadays results from the use of novel technologies providing formation of a homogeneous high-density structures. Slight deviations of the carbon content from the equilibrium state lead to the formation of brittle η-phases (in particular, Co3W3C) and, accordingly, to deterioration of the mechanical properties of the product. We present the results of studying the homogeneity of the phase composition of the samples of hard alloys WC + 10% Co, obtained using advanced technologies of plasma-chemical synthesis and spark plasma sintering (SPS). The layer-by-layer X-ray phase analysis revealed the heterogeneity of the phase composition in depth: the brittle η-phase (Co3W3C) appears at a depth of ≥100 μm and reaches a constant value of 18 ± 1 wt.% at >200 μm, which indirectly confirms the hypothesis of carbon diffusion from graphite punches contacting with the surface of sintered samples and makes it possible to expand the range of parameters affecting the process of spark plasma sintering.
About the Authors
K. E. SmetaninaRussian Federation
Ksenia E. Smetanina
P. V. Andreev
Russian Federation
Pavel V. Andreev
23, prosp. Gagarina, Nizhny Novgorod, 603950
49, ul. Tropinina, Nizhny Novgorod, 603137
E. A. Lantsev
Russian Federation
Evgeny A. Lantsev
M. M. Vostokov
Russian Federation
Mikhail M. Vostokov
N. V. Malekhonova
Russian Federation
Natalia V. Malekhonova
References
1. Panov V. S., Chuvilin A. M. Technology and properties of sintered carbide alloys and products from them. — Moscow: MISIS, 2001. — 428 p. [in Russian].
2. Panov V. S. Occurrence and Ways of Development of Manufacture of Domestic Hard Alloy Products / Materialovedenie. 2018. N 1. P. 9 – 14. DOI: 10.1134/S2075113318040263.
3. Tokita M. Development of advanced Spark Plasma. Sintering (SPS) systems and its applications / Ceramic Transaction. 2006. Vol. 194. P. 51 – 60. DOI: 10.1002/9780470082751.ch4.
4. Cavaliere P. Spark Plasma Sintering of Materials. — Springer International Publishing, 2019. — 781 p. DOI: 10.1007/978- 3-030-05327-7.
5. Munir Z., Anselmi-Tamburini U., Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation materials: a review of the spark plasma sintering method / J. Mater. Sci. 2006. Vol. 41(3). P. 763 – 777. DOI: 10.1007/s10853- 006-6555-2.
6. Kurlov A. S., Gusev A. I. Tungsten Carbides: Structure, Properties and Application in Hardmetals. — Springer International Publishing, 2013. — 242 p. DOI: 10.1007/978-3-319-00524-9.
7. Kwon Y., Kim H., Choi D., Kim J. Mechanical properties of binderless WC produced by SPS process / Novel materials processing by advanced electromagnetic energy sources. 2005. P. 275 – 279. DOI: 10.1016/B978-008044504-5/50056-8.
8. Chuvildeev V. N., Nokhrin A. V., Baranov G. V., et al. Study of the structure and mechanical properties of nano- and ultradispersed mechanically activated heavy tungsten alloys / Nanotechnologies in Russia. 2013. Vol. 8(1 – 2). P. 108 – 122. DOI: 10.1134/S1995078013010047.
9. Blagoveshcenskiy Yu. V., Isaeva N. V., Blagoveshchenskaya N. V., et al. Methods of compacting of nanostructured tungsten-cobalt alloys from nanopowders obtained by plasma chemical synthesis method / Perspekt. Mater. 2015. N 1. P. 5 – 21 [in Russian].
10. Isaeva N. V., Blagoveshcenskiy Yu. V., Blagoveshchenskaya N. V., et al. Production of nanopowders of carbides and carbide mixtures using low-temperature plasma / Izv. Vuzov. Poroshk. Metallurg. Funkts. Pokr. 2013. Vol. 3. P. 7 – 14. DOI: 10.17073/1997-308X-2013-3-7-14 [in Russian].
11. Tokita M. Spark Plasma Sintering (SPS) Method, Systems, and Applications. Handbook of Advanced Ceramics. — Academic Press, 2013. DOI: 10.1016/B978-0-12-385469-8.00060-5.
12. Olevsky E. A., Dudina D. V. Field-Assisted Sintering: Science and Applications. — Springer International Publishing, 2018. — 417 p. DOI: 10.1007/978-3-319-76032-2.
13. Chuvildeev V. N., Blagoveshchenskiy Yu. V., Nokhrin A. V., et al. Spark plasma sintering of tungsten carbide nanopowders obtained through DC arc plasma synthesis / Journal of Alloys and Compounds. 2017. Vol. 708. P. 547 – 561. DOI: 10.1016/j.jallcom.2017.03.035.
14. Smetanina K. E., Andreev P. V., Malekhonova N. V., Lantsev E. A. Optimization of the phase composition of hard alloys obtained by spark plasma sintering of powders WC + 10 % Co / Journal of Physics: Conference Series. 2019. Vol. 1347. P. 012064. DOI: 10.1088/1742-6596/1347/1/012064.
15. Andreev P. V., Smetanina K. E., Lantsev E. A. Study of the phase composition of fine-grained tungsten carbide based ceramic materials by x-ray phase analysis / Zavod. Lab. Diagn. Mater. 2019. Vol. 85. N 8. P. 37 – 42. DOI: 10.26896/1028-6861- 2019-85-8-37-42 [in Russian].
Review
For citations:
Smetanina K.E., Andreev P.V., Lantsev E.A., Vostokov M.M., Malekhonova N.V. X-ray diffraction layer-by-layer analysis of tungsten carbide-based hard alloys. Industrial laboratory. Diagnostics of materials. 2020;86(8):38-42. (In Russ.) https://doi.org/10.26896/1028-6861-2020-86-8-38-42