Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Electromagnetic and magnetic methods of non-destructive testing for control of damage accumulation in structural steels and alloys (review)

https://doi.org/10.26896/1028-6861-2020-86-8-49-57

Abstract

Control of the stress-strain state, compressive and tension stresses, accumulated fatigue damage is one of the goals of non-destructive testing. We consider data of current research in the field of eddy current and electromagnetic methods of non-destructive testing aimed at solving the problem of monitoring the accumulated damage in structural steels and alloys. Developments for practical implementation of the coercive force method, the eddy current structurescopy of non-magnetic materials, the method of higher harmonics and remanence-based control, the method of magnetic noise (Barkhausen noise) are considered. The physical foundations of non-destructive testing methods are considered along with their brief comparative analysis. Examples of non-destructive testing of critical units, such as operating oil and gas pipelines, aircraft parts, bearing parts, pressure vessels, crane parts, etc. are given. The possibility of using the eddy current method for control of the austenitic phase of cold rolled austenitic steels (AISI 304, AISI 321, AISI 316) is analyzed. The examples of static and fatigue tests of the samples of various steels and alloys are given: St3, St20, St45, D16T, AMg6, AMg6N, 12Kh18N9T, 08Kh18N9, 40Kh, R91. Metrology issues and the impact of interfering parameters affecting the measurement error are considered. The equipment used for a number of methods is discussed. Conclusions regarding the limits of applicability and limitations of the considered methods are drawn. The review provides links to both the fundamental works in the field of electromagnetic structurescopy and to modern research in this area which is important for the practical implementation of the devices based on electromagnetic and magnetic methods of non-destructive testing.

About the Author

A. G. Efimov
JSC RII «SPECTRUM»
Russian Federation

Alexey G. Efimov

35, str. 1, Usacheva ul., Moscow, 119048



References

1. Dorofeev A. L., Ershov R. E. Physical Basis of Electromagnetic Structuroscopy. — Novosibirsk: Nauka, 1985. — 172 p. [in Russian].

2. Mikheev M. N., Gorkunov E. S. Magnetic Methods of Structural Analysis and Non-destructive Testing. — Moscow: Nauka, 1993. — 252 p. [in Russian].

3. Bida G. V. Magnetic Properties and and Non-destructive Testing of Thermal Hardened Steel. — Moscow: Marshrut, 2006. — 304 p. [in Russian].

4. Nichipuruk A. P. Magnetic Hysteresis Model and its Application in the Magnetic Structuretroscopy of Structural Steels. Doctoral Thesis. — Yekaterinburg, 2007. — 262 p. [in Russian].

5. Klyuev V. V., Muzhitsky V. F., Gorkunov E. S., Shcherbinin V. E. Non-destructive testing. Handbook / V. V. Klyuev (general editor). Vol. 6. Magnetic control methods. — Moscow: Mashinostroenie, 2006. — 827 p. [in Russian].

6. Pokrovsky A. D., Khvalebnov Yu. P. The method of higher harmonics in electromagnetic defectoscopy. — Moscow: Mashinostroenie, 1980. — 55 p. [in Russian].

7. Tyutin M. R., Botvina L. R., Levin V. P., Efimov A. G., et al. Evaluation of Cyclic Damage of Structural Steels by Acoustic and Magnetic NDT Methods / Zavod. Lab. Diagn. Mater. 2017. Vol. 83. N 7. P. 44 – 48 [in Russian].

8. Sokovets K. A. Magnetic Control of Ferromagnetic Objects Parameters by Higher Harmonics Method. Master’s Thesis. — Tomsk: TPU, ISHNKB, 2018. — 92 p. [in Russian].

9. Koshel’nikov V. S., Pokrovskii A. D. Study of Eddy Current Probe Signals During Control by Higher Harmonics Method / Vestn. MÉI. 2016. N 3. P. 50 – 53 [in Russian].

10. Zaivenko G. M., Zaitsev A. M., Kurakin G. M. The Application of the Method of Higher Harmonics to Assess the Performance of Parts of Rolling Bearings / Non-destructive Testing by Electromagnetic Methods. Chapter I. — Moscow: MDNTP, 1971. P. 79 – 84 [in Russian].

11. Bakunov A. S., Muzhitskii V. F., Popov B. E. The Control of the Mechanical Properties of Aluminum Alloys by the Electromagnetic Method / Defectoscopiya. — 1995. N 3. P. 61 – 67 [in Russian].

12. Khailov A. N., Pen’kova T. N., Bakunov A. S., Muzhitskii V. F., et al. Non-destructive Testing of the Mechanical Characteristics of Aluminum Alloys by Electrical Conductivity / Defectoskopiya. 2006. N 7. P. 3 – 14 [in Russian].

13. Filinov V. V., Reznikov Yu. A., Vagin A. V., Kuznetsov N. S. The Experience of Applying the Barkhausen Effect Method to Control the Stress State of Parts Made of High-strength Steel / Defectoskopiya. 1992. N 5. P. 17 – 20 [in Russian].

14. Mishakin V. V., Klyushnikov V. A., Gonchar A. V., Kachanov M. On assessing damage in austenitic steel based on combination of the acoustic and eddy current monitoring / Int. J. Engin. Sci. 2019. Vol. 135. P. 17 – 22.

15. Gonchar A. V., Bizyaeva I. T., Klyushnikov V. A., Mishakin V. V. Ultrasonic and Eddy-current Research of the Process of Plastic Deformation of a Welded Joint Made of Austenitic Steel / Defectoskopiya. 2016. N 10. P. 76 – 83 [in Russian].

16. Khan S. H., Farhad Ali, Iqbal M. A., Khan A. Nusair. Eddy current detection of changes in stainless steel after cold reductions / NDT. Net Journal. 2007. P. 1 – 6.

17. Gorkunov E. S., Dragoshanskii Yu. N., Makhovski M. The Barkhausen Effect and its Implementation in the Structuroscopy of Ferromagnetic Materials / Defectoskopiya. 1998. N 1. P. 5 – 27 [in Russian].

18. Vengrinovich V. L., Vintov D. A. Barkhausen Noise Distribution in the Stress Concentration Zone During Fatigue Tests of 10HSND Steel / Kontrol’. Diagnostika. 2015. N 8. P. 31 – 38 [in Russian].

19. Vengrinovich V. L., Vintov D. A., Prudnikov A. N., Podugol’nikov P. A. Features of Measuring Stresses in Ferromagnets by the Barkhausen Effect Method / Kontrol’. Diagnostika. 2017. N 8. P. 10 – 17 [in Russian].

20. Garifullin N. M. Remote the Stress-strain State Pipelines Control System Based on the Electromagnetic Method / Vestn. Bashkir. Univ. 2017. Vol. 22. N 2. P. 336 – 339 [in Russian].

21. Aginei R. V. Development of a Methodology for Assessing the Stress State of Oil and Gas Pipelines by the Coercive Force of a Metal. Candidate’s thesis. — Ukhta, 2005. — 143 p. [in Russian].

22. Berdnik M. M. Development of a Method for Assessing the Stress-strain State of Oil and Gas Pipelines by the Coercive Force of a Metal. Candidate’s thesis. — Ukhta, 2010. — 175 p. [in Russian].

23. Sandomirskii S. G. The Relationship Between the Magnetic Parameters of the Metal of the Weld Zone of Pipe Steels Under the Action of Tangential and Normal Stresses / Deform. Razrush. Mater. 2016. N 10. P. 30 – 34 [in Russian].

24. Sandomirskii S. G. The Relationship Between the Magnetic Parameters of the Metal Pipe Steel in Tension / Mechanics, resource and diagnostics of materials and structures. Collection of materials. — Yekaterinburg: Izd. IMASH Uro RAN, 2016. P. 121 [in Russian].

25. Gorkunov E. S., Zadvorkin S. M., and Goruleva L. S. Correlation of residual stresses with magnetic properties of Armco iron / AIP Conference Proceedings 2053,030022 (2018).

26. Sandomirskii S. G. Correlation Between Mechanical Properties and Magnetic Parameter of Steel 40x / Mekh. Mash. Mekhanizmov Mater. 2019. N 3(48). P. 43 – 50 [in Russian].

27. Zakharov V., Bezlyudko G., Solomakha R., Aman A. Monitoring of Fatigue and Stress-Strain State of Structures and Equipment with New Magnetic Transducer / WCNDT 2016, Book of Abstracts. I1. P. 1 – 4.

28. Xin W., Ding K., Lv Q. Theory and Experimental Study on Magnetic Monitoring of Steel Structure Fatigue Damage Based on Different Exciting Current / 7th Asia-Pacific Workshop on Structural Health Monitoring. 2018. https://www.ndt.net/article/apwshm2018/papers/94.pdf (accessed November 26, 2019) [in Russian].

29. Nekhotyashchii V. A., Palienko A. L., Gopkalo A. P. Assessment of Degradation of Steel 08Kh18N9 According to the Kinetics of Coercive Force/ V Mire Nerazrush. Kontr. 2015. Vol. 18. N 4. P. 14 – 16 [in Russian].

30. Piotrowski L., Chmielewski M., Kowalewski Z. The Dominant Influence of Plastic Deformation Induced Residual Stress on the Barkhausen Effect Signal in Martensitic Steels/ Journal of Nondestruct Evaluation. 2017. N 36. DOI: 10.1007/s10921- 016-0389-x.

31. Zagidulin R. V., Zagidulin T. R., Mardamshin V. R., Bakiev T. A. Issues of Controlling the Complex Stress State of Metal in Steel Pipes. Calculation of the Field Strength of the Remanent Magnetization with a Complex Metal Resistance / Neftegaz. Delo. 2019. Vol. 17. N 1. P. 91 – 98. DOI: 10.17122/ ngdelo-2019-1-91-98 [in Russian].

32. Zagidulin R. V., Zagidulin T. R., Osipov K. O. Investigation of the Influence of the Structure and Elemental Composition of the Alloy on the Results of Magnetic Control of the Stress State of the Metal / Zavod. Lab. Diagn. Mater. 2018. Vol. 84. N 7. P. 55 – 61 DOI: 10.26896/1028-6861-2018-84-7-55-61 [in Russian].

33. Zagidulin R. V., Zagidulin T. R., Aminev A. F., Osipov K. O. Issues of Continuous Magnetic Control of the Stress- strain State of a Metal by the Field Strength of the Remanent Magnetization / Neftegaz. Delo. 2017. Vol. 15. N 1. P. 169 – 174 [in Russian].

34. Zagidulin T. R. Research and Development of a Local Magnetic Control Method of the Stress-strain State of Metal Elements of Hull Equipment and Metal Structures. Candidate’s thesis. — Ufa, 2015. — 134 p. [in Russian].


Review

For citations:


Efimov A.G. Electromagnetic and magnetic methods of non-destructive testing for control of damage accumulation in structural steels and alloys (review). Industrial laboratory. Diagnostics of materials. 2020;86(8):49-57. (In Russ.) https://doi.org/10.26896/1028-6861-2020-86-8-49-57

Views: 889


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)