Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Rapid X-ray fluorescence analysis of intercalation compounds for molybdenum content

https://doi.org/10.26896/1028-6861-2020-86-9-24-29

Abstract

Expansion of the works on the synthesis and study of the structure of new intercalation compounds based on molybdenum disulfide (MD)with various organic molecules inclusions in the layered structures, entails the necessity of developing methods for rapid analysis of those compounds for molybdenum content. We developed a rapid method of RF analysis of such compounds using in bulk method in the range of 28 – 50% Mo content. Analytical signals were measured for MoKα line on a VRA-30 spectrometer («Karl Zeiss», Jena Germany, X-ray tube with Rh-anode operated in the mode of 35 kV, 15 mA). The molybdenum content is calculated using the derived constraint equation, the error of determination is ±2.5% Mo (abs.). In contrast to the traditional methods of external standard method with dilution used in the laboratory practice, the proposed method provides a satisfactory accuracy and reduces the duration of analysis from ~100 to ~20 min, the sample material being kept safe for further studies. Correctness of the method was confirmed for the batch of compounds by comparison of the obtained results and the data of XRF analysis with the dilution procedure.

About the Authors

V. N. Talanova
A.N. Nesmeyanov Institute of Organoelement Conpounds, Russian Academy of Sciences (INEOS RAS)
Russian Federation

Valeria N. Talanova

28, ul. Vavilova,Moscow, 119991



O L. Lependina
A.N. Nesmeyanov Institute of Organoelement Conpounds, Russian Academy of Sciences (INEOS RAS)
Russian Federation

Olga L. Lependina

28, ul. Vavilova,Moscow, 119991



D. Kh. Kitaeva
A.N. Nesmeyanov Institute of Organoelement Conpounds, Russian Academy of Sciences (INEOS RAS)
Russian Federation

Dinara Kh. Kitaeva

28, ul. Vavilova,Moscow, 119991



A. G. Buyanovskaya
A.N. Nesmeyanov Institute of Organoelement Conpounds, Russian Academy of Sciences (INEOS RAS)
Russian Federation

Anastasiya G. Buyanovskaya

28, ul. Vavilova,Moscow, 119991



References

1. Goloveshkin A. S., Bushmarinov I. S., Korlyukov A. A., et al. Binuclear titanium chloride complexes with chiral tetraaryl-1,3-dioxolane-4,5-dimethanol ligands as a new type of catalysts of ethylene and propylene polymerization / Rus. J. Inorg. Chem. 2017. Vol. 62. N 6. P. 729 – 735. DOI: 10.1134/S0036023617060080.

2. Ushakov I. E., Goloveshkin A. S., Lenenko N. D., et al. Hydrogen bond-driven self-assembly between single-layer MoS2 and alkyldiamine molecules / Cryst. Growth Des. 2018. Vol. 18. P. 5116 – 5123. DOI: 10.1021/acs.cgd.8b00551.

3. Bushmarinov I. S., Goloveshkin A. S., Lenenko N. D., et al. Electrostatic Origin of Stabilization in MoS2 — Organic Nanocrystals / J. Phys. Chem. Lett. 2016. Vol. 7. N 24. P. 5162 – 5167. DOI: 10.1021/acs.jpclett.6b02582.

4. Golub A. S., Lenenko N. D., Zaikovskii V. I., et al. Modifying magnetic properties and dispersity of few-layer MoS2 particles by 3d metal carboxylate complexes / Mater. Chem. Phys. 2016. Vol. 183. P. 457 – 466. DOI: 10.1016/j.matchemphys.2016.09.001.

5. Blokhin M. A. X-ray physics. — Moscow: Gostekhizdat, 1957. — 518 p. [in Russian].

6. Losev N. F. Quantitative X-ray spectral fluorescence analysis. — Moscow: Nauka. Fizmatlit, 1969. — 336 p. [in Russian].

7. Losev N. F., Smagunova A. N. Fundamentals of X-ray spectral fluorescence analysis. — Moscow: Khimiya, 1982. — 207 p. [in Russian].

8. Bakhtiyarov A. V., Savel’ev S. K. X-ray fluorescence analysis of mineral raw materials. — St. Petersburg: Izd. SPb. Univ., 2014. — 132 p. [in Russian].

9. Suvorova D. S., Khudonogova E. V., Revenko A. G. X-ray fluorescence determination of Cs, Ba, La, Ce, Nd, and Ta concentrations in rocks of various composition / X-Ray Spectrom. 2017. Vol. 46. N 3. P. 200 – 208. DOI: 10.1002/xrs.2747.

10. Chubarov V. M., Amosova A. A., Finkelshtein A. L. X-ray fluorescence determination of ore elements in ferromanganese formations / Zavod. Lab. Diagn. Mater. 2019. Vol. 85. N 12. P. 5 – 13. DOI: 10.26896/1028-6861-2019-85-12-5-13 [in Russian].

11. Sharanov P. Yu., Alov N. V. Total Reflection X-Ray Fluorescence Analysis of Solid Metallurgical Samples / J. Anal. Chem. 2018. Vol. 73. N 11. P. 1085 – 1092. DOI: 10.1134/S0044450218110129.

12. Krotova A. A., Prikhodko K. Ya., Vladimirova S. A., Filatova D. G. Determination of nickel, zinc and cobalt in advanced materials based on NixCO3 – xO4 and ZnxCO3 – xO4 by inductively coupled plasma mass spectrometry (ICP-MS) and X-ray fluorescence / Zavod. Lab. Diagn. Mater. 2018. Vol. 84. N 1. Part 1. P. 10 – 13. DOI: 10.26896/1028-6861-2018-84-1-I-10-13 [in Russian].

13. Malkov A. V., Kozhevnikov A. Y., Kosyakov D. S., Kosheleva A. E. Determination of Ni, Co, and Cu in seawater by total external reflection X-ray fluorescence spectrometry / J. Anal. Chem. 2017. Vol. 72. N 6. P. 608 – 616. DOI: 10.7868/S004445021706010X.

14. Revenko A. G., Sharykina D. S. The application of X-ray fluorescence analysis to study the chemical compositions of tea and coffee samples / Analit. Kontrol’. 2019. Vol. 23. N 1. P. 6 – 23. DOI: 10.15826/analitika.2019.23.1.015 [in Russian].

15. Methods of quantitative elemental microanalysis / N. E. Gelman, ed. — Moscow: Khimiya, 1987. — 293 p. [in Russian].

16. Talanova V. N., Lependina O. L., Buyanovskaya A. G., et al. Sources of errors in nondestructive X-ray fluorescence analysis of small samples diluted with a solid diluent: XRF determination of Mn in cymantrenes / Zavod. Lab. Diagn. Mater. 2017. Vol. 83. N 10. P. 65 – 69. DOI: 10.26896/1028-6861-2017-83-10-65-69 [in Russian].

17. Talanova V. N., Lependina O. L., Kitaeva D. Kh., et al. Experience in using Alpha-VRA-30 software for determination of iron and zinc content in organometallic compounds and polymers / Zavod. Lab. Diagn. Mater. 2018. Vol. 84. N 8. P. 20 – 24. DOI: 10.26896/1028-6861-2018-84-8-20-24 [in Russian].

18. Kuz’mina T. G., Troneva M. A., Kononkova N. N., Romashova T. V. Error of sample preparation in pressing emitters for X-ray fluorescence analysis / J. Anal. Chem. 2017. Vol. 72. N 3. P. 272 – 278. DOI: 10.7868/S0044450217030082.

19. Blokhin M. A., Schweitzer I. G. X-ray spectral handbook. — Moscow: Nauka, 1982. — 373 p. [in Russian].

20. RMG 76–2014. GSI. Internal quality control of quantitative chemical analysis results. — Moscow: Standartinform, 2015. — 110 p. [in Russian].

21. Inyaev I. V., Danilina E. I. Metrological processing of the results of chemical analysis. — Chelyabinsk: Izd. Tsentr YuUrGU, 2015. — 65 p. [in Russian].


Review

For citations:


Talanova V.N., Lependina O.L., Kitaeva D.Kh., Buyanovskaya A.G. Rapid X-ray fluorescence analysis of intercalation compounds for molybdenum content. Industrial laboratory. Diagnostics of materials. 2020;86(9):24-29. (In Russ.) https://doi.org/10.26896/1028-6861-2020-86-9-24-29

Views: 1381


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)