Restoration of the orientation distribution functions from direct polar figures using superposition of normal distributions and arbitrarily defined cells (comparative analysis)
https://doi.org/10.26896/1028-6861-2020-86-9-37-44
Abstract
A comparative study of orientation distribution functions (ODF) calculated from direct pole figures (DPF) is carried out using a superposition of a large number of positive standard Gaussian normal distributions with the same scattering (Texxor program) and the method of arbitrary defined cells (ADC) (LaboTex program) to identify the advantages and shortcomings of each method. The comparison was carried out for the Santa Fee reference orientation (the previously calculated total PPF were used as the experimental PPF) and the measured incomplete PPF characterizing the recrystallization textures of 6016 aluminum alloy with a high degree of sharpness. The RP-factor was used as a criterion for evaluating the calculation errors for both programs: the difference between the intensities of the experimental and calculated PPFs averaged over each and all measured PPFs and referred to the corresponding experimental values on the pole figure. The values of the RP-factors depend on the method of the ODF reconstructing and the experimental errors of the measured pole figures of the materials under study. It is shown that the values of RP(0.5)-factor (normalized intensities used in the calculation, ≥0.5) for Santa Fee are 0.3 (Texxor) and 2.6 % (LaboTex) and the corresponding maximum values of the orientational density of ODF differ insignificantly (5.1 and 4.5, respectively). However, for measured incomplete PPF of the recrystallization texture of the aluminum alloy, they differ significantly (61.8 and 95.9), and the RP(0.5)-factor increases to 12.6 and 30.5%, respectively. Since the method of superposition of normal distributions provides a lower value of the RP(0.5)-factor compared to the ADC method, the ODF reconstruction using the Texxor program is preferable compared to LaboTex.
About the Authors
V. N. SerebryanyRussian Federation
Vladimir N. Serebryany
49, Leninsky pr., Moscow, 119334
A. S. Kolyanova
Russian Federation
Aleksandra S. Kolyanova
49, Leninsky pr., Moscow, 119334
References
1. Pawlik K. Determination of the Orientation Distribution Function from Pole Figures in Arbitrarily Defined Cells / Phys. Stat. Sol. (b). 1986. Vol. 134. P. 477 – 483.
2. Pawlik K., Pospiech J., Lucke K. The ODF approximation from pole figures with the aid of the ADC method / Textures and Microstructures, 1991. Vol. 14 – 18. P. 25 – 30.
3. Kim S.-H., You B.-S., Yim C. D., Seo Y.-M. Texture and microstructure changes in asymmetrically hot rolled AZ31 magnesium alloy sheets / Materials Letters. 2005. Vol. 59. N 29 – 30. P. 3876 – 3880. DOI: 10.1016/j.matlet.2005.07.024
4. Alilil B., Bradail D., Mathon M., et al. On the rolling and annealing texture in a Cu – 15Ni – 8Sn (wt. %) alloy / Kovove Mater. 2008. Vol. 46. N 6. P. 371 – 376.
5. Gurao N., Ali A., Suwas S. Study of texture evolution in metastable β-Ti alloy as a function ofstrain path and its effect on α transformation texture / Materials Science and Engineering A. 2009. Vol. 504. P. 24 – 35. DOI: 10.1016/j.msea. 2008.11.053
6. Abreu H., Silva M., Herculano L., Bhadeshia H. Texture Analysis of Deformation Induced Martensite in an AISI 301L Stainless Steel: Microtexture and Macrotexture Aspects / Materials Research. 2009. Vol. 12. N 3. P. 291 – 297. DOI: 10.1590/S1516-14392009000300008
7. Shaeri M. H., Salehi M. T., Seyyedein S. H., et al. Characterization of microstructure and deformation texture during equalchannel Angular pressing of Al – Zn – Mg – Cu alloy / Journal of Alloys and Compounds. 2013. Vol. 576. P. 350 – 357. DOI: 10.1016/j.jallcom.2013.05.182
8. Verstraete K., Helbert A., Brisset F., et al. Microstructure, mechanical properties and texture of an AA6061/AA5754 composite fabricated by cross accumulative roll bonding / Materials Science and Engineering. 2015. Vol. 640. P. 235 – 242. DOI: 10.1016/j.msea.2015.05.106
9. Perlovich Yu. A., Isaenkova M. G., Krymskaya O. A., et al. Optimization of the procedure for determining integral texture parameters of products from zirconium-based alloys using the orientation distribution function / IOP Conf. Series: Materials Science and Engineering. 2016. Vol. 130. DOI: 10.1088/1757-899X/130/1/012056
10. Hattal A., Chauveau T., Djemai M., et al. Data related to spectrum analyzes for phasesidentification, microstructure and mechanicalproperties of additive manufactured Ti6Al4V reinforced with nano Yttria stabilized zirconia / Data in Brief. 2020. Vol. 29. P. 1 – 8. DOI: 10.1016/j.dib.2020.105249
11. Bunge H.-J. Texture analysis in materials science. Mathematical methods. — London: Butterworths, 1982. — 420 p.
12. Matthies S. Standart Functions in Texture Analysis / Phys. Stat. Sol. (b). 1980. Vol. 101. P. 111 – 115.
13. Savyolova T. I., Ivanova T. M. Methods of orientation distribution function restoration for pole figures (review) / Zavod. Lab. Diagn. Mater. 2008. Vol. 74. N 7. P. 25 – 33 [in Russian].
14. Savyolova T. I., Kurtasov S. F. ODF restoration by orientations grid / Proceeding of the 14th International Conference on Texture of Materials. — Louven, Belgium, 2005. P. 1693 – 1697.
15. Kurtasov S. F. Technique of the quantitative analysis of texture rolling of materials with a cubic symmetry of the crystal lattice / Zavod. Lab. Diagn. Mater. 2007. Vol. 73. N 7. P. 41 – 44 [in Russian].
16. Shamray V. F., Serebryany V. N. Researches of textured materials in laboratory of crystal-structure researches at the Institute of Metallurgy and Materials Science, RAS. Part 1. Textures of materials of aluminium-lithium alloys / Tsvetnye metally. 2011. N 5. P. 59 – 64 [in Russian].
17. Serebryany V. N., Rokhlin L. L., Monina A. N. Texture and Anisotropy of Mechanical Properties of the Magnesium Alloy of Mg – Y – Gd – Zr System / Perspekt. Mater. 2013. N 7. P. 12 – 20 [in Russian].
18. Aryshenskii E. V., Serebryany V. N., Tepterev M. S., Grechnikova A. F. Study of the Laws of Texture Formation in the Alloy 8011 during Cold Rolling and Annealing / The Physics of Metals and Metallography. 2015. Vol. 116. N 9. P. 925 – 931.
19. Ivanova T. V., Serebryany V. N. Restoration of orientation distribution function using texture components with radial normal distributions / Zavod. Lab. Diagn. Mater. 2017. Vol. 83. N 1. P. 43 – 47 [in Russian].
20. Dobatkin S., Galkin S., Estrin Yu., et al. Grain refinement, texture, and mechanical properties of magnesium alloy after radial-shear rolling / Journal of Alloys and Compounds. 2019. Vol. 774. P. 969 – 979.
21. Estrin Yu., Martynenko N., Anisimova N., et al. The Effect of Equal-Channel Angular Pressing on the Microstructure, the Mechanical and Corrosion Properties and the Anti-Tumor Activity of Magnesium Alloyed with Silver / Materials. 2019. Vol. 12. DOI: 10.3390/ma12233832.
22. Bukharova T. I., Savyolova T. I. Application of Normal Distributions on SO(3) and for Sn Orientation Distribution Function Approximation / Textures and microstructures. 1993. Vol. 21. P. 161 – 176.
23. Vasilenko G. I. The signal restoration theory. — Moscow: Sovetskoe radio, 1979. — 271 p. [in Russian].
24. Huang T. S., Barker D. A., Berger S. P. Iterative Image Restoration / Applied Optics. 1975. Vol. 14. N 5. P. 1165 – 1168.
25. Matthies S. On the basic elements of and practical experiences with the WIMV algorithm — an odf reproduction method with conditional ghost correction / Proc. 8th Int. Conf. of Textures of Materials (ICOTOM8). — Santa Fe, NM, USA: The Metallurgical Society, 1988. P. 37 – 48.
26. Matthies S., Venk H., Vinel G. Some basic concepts of texture analysis and comparison of three methods to calculate orientation distributions from pole figures / J. Appl. Cryst. 1988. Vol. 21. P. 285 – 304.
27. Savyolova T. I., Ivanova T. M., Sypchenko M. V. Methods for solving ill-posed problems of texture analysis and their applications. — Moscow: NRNU MEPI, 2012. — 268 p. [in Russian].
28. Shamray V. F., Livshic V. A., Serebryany V. N., et al. The experience of using a DRON-7 diffractometer with a PGTM attachment for texture research / Zavod. Lab. Diagn. Mater. 2009. Vol. 75. N 1. P. 32 – 35 [in Russian].
29. Serebryany V. N., Kurtasov S. F., Litvinovich M. A. The ODF error study in pole figures conversion using the statistical method of ridge estimates / Zavod. Lab. Diagn. Mater. 2007. Vol. 73. N 4. P. 29 – 34 [in Russian].
Review
For citations:
Serebryany V.N., Kolyanova A.S. Restoration of the orientation distribution functions from direct polar figures using superposition of normal distributions and arbitrarily defined cells (comparative analysis). Industrial laboratory. Diagnostics of materials. 2020;86(9):37-44. (In Russ.) https://doi.org/10.26896/1028-6861-2020-86-9-37-44