Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Study of the crack resistance and fracture mechanism of steel-aluminum composite material

https://doi.org/10.26896/1028-6861-2020-86-9-63-69

Abstract

Steel-aluminum composite materials are widely used in technology due to perfect wedding of their weight efficiency and high mechanical properties. This is the reason for their wide application in the aerospace industry for manufacturing case-type parts of rockets, fuel tanks and elements of aviation armor. The goal of the study is analysis of the crack resistance and the mechanism of fracture of aluminum-steel composite material (20 vol.%) with a density of 2.85 g/cm3. The matrix component of the material was obtained using a finely dispersed aluminum powder PAP-2. The reinforcing component was made of steel meshes woven from austenitic steel cable (08Kh17N13M2). The transverse bending strength of the obtained material (550 – 600 MPa) was calculated from the maximum load corresponding to the first jump (onset) of the crack nucleating in the matrix. The crack resistance of the composite material at the stage of fracture initiation (estimated using K1c parameter) varied from 15 to 30 MPa · m1/2. The crack resistance of the composite at the stage of fracture development was described using the specific effective fracture work γF ranged from 2 × 104 to 8 × 104 J/m2. The latter parameter exceeds by the order of magnitude the value γF determined for steel St3, aluminum alloy D16T, and titanium alloy VT-5. The high value of γF (which is an advantage of the obtained composite) is attributed to high-energy-consuming mechanism of the material fracture provided by the increased energy consumption for the destruction of the bridges between the matrix aluminum layers by cutting them off with a cable resulting from the shear stresses, for overcoming the friction forces when pulling cable out of the matrix, and for shifting layered packets formed by diffusion-bonded aluminum scaly particles inside the matrix. The properties of the obtained steel-aluminum composite provide the expediency of using the material for lightweight structural elements operated under mechanical loading.

About the Authors

D. A. Ivanov
Moscow Aviation Institute (National Research University) MAI
Russian Federation

Dmitry A. Ivanov

4, Volokolamskoe sh., Moscow, 125993



S. D. Shlyapin
Moscow Aviation Institute (National Research University) MAI
Russian Federation
Sergey D. Shlyapin4, Volokolamskoe sh., Moscow, 125993 


G. E. Valiano
Joint Institute for High Temperatures, Russian Academy of Sciences
Russian Federation

Georgy E. Valiano

13, str. 2, Izhorskaya ul., Moscow, 125412



N. D. Akkuzhin
Moscow Aviation Institute (National Research University) MAI
Russian Federation

Nurgiz D. Akkuzhin

4, Volokolamskoe sh., Moscow, 125993



L. V. Fedorova
Moscow Aviation Institute (National Research University) MAI
Russian Federation

Larisa V. Fedorova

4, Volokolamskoe sh., Moscow, 125993



References

1. Ivanov D. A., Sitnikov A. I., Shlyapin S. D. Composite materials. — Moscow: Yurait, 2019. — 253 p. [in Russian].

2. Trykov Yu. P., Gurevich L. M., Shmorgun V. G. Layered composites based on aluminum and its alloys. — Moscow: Metallurgizdat, 2004. — 230 p. [in Russian].

3. Mileiko S. T. Micro- and macrocracks in composites / Mekh. Kompozit. Mater. 1979. N 2. P. 276 – 279 [in Russian].

4. Anishchenkov V. M., Mileiko S. T. Fatigue failure of a layered composite / Dokl. AN SSSR. 1978. Vol. 241. N 5. P. 1068 – 1069 [in Russian].

5. Friedlyander I. N. Modern aluminum, magnesium alloys and composite materials based on them / Metalloved. Term. Obrab. Met. 2002. N 7. P. 24 – 29 [in Russian].

6. Material Science and Technology of Materials. Part 1 / G. P. Fetisov, Ed. — Moscow: Yurait, 2018. — 386 p. [in Russian].

7. Composite materials: development, dynamic testing, mathematical modeling / A. N. Ishchenko, Ed. — Tomsk: Izd. NTL, 2016. — 408 p. [in Russian].

8. Kuzmich Yu. V., Kolesnikova I. G., Serba V. I., Freidin B. M. Mechanical alloying. — Apatity: Izd. Kol’skogo nauchnogo tsentra RAN, 2004. — 179 p. [in Russian].

9. Dinesh K., Geeta A., Rajesh P. Properties and characterization of Al – Al2O3 composites processed by casting and powder metallurgy routes (review) / Int. J. of latest trends in engineering and technology. 2013. Vol. 2. Issue 4. July. P. 486 – 496.

10. Kang Yuan-Chang, Chan Sammy Lap-Ip. Tensile properties of nanometric Al2O3 particulate — reinforced aluminum matrix composites / Materials chemistry and physics. 2004. Vol. 85. P. 438 – 443.

11. Razavi Hesabi Z., Simch A., Seyed Reihani S. M. Structural evolution during mechanical milling of nanometric and micrometric Al2O3 reinforced Al matrix composites / Mater. Sci. Engin. A. 2006. Vol. 428. P. 159 – 168.

12. Razavi Hesabi Z., Hafizpour H. R., Simchi A. An investigation on the compressibility of aluminum/nano-alumina composite powder prepared by blending and mechanical milling / Mater. Sci. Engin. A. 2007. Vol. 449 – 451. P. 829 – 832.

13. Tavoosi M., Karimzadeh F., Enayati M. H., Heidarpour A. Al – Zn/Al2O3 nanocomposite prepared by reactive milling and hot pressing methods / Journal of Alloys and Compounds. 2009. Vol. 475. P. 198 – 201.

14. Poirier D., Drew R. A. L., Trudeau M. L., Gauvin R. Fabrication and properties of mechanically milled alumina/aluminium nanocomposites / Mater. Sci. Engin. A. 2010. Vol. 527. P. 7605 – 7614.

15. Tabandeh Kh. M., Jenabali J. S. A., Moshksar M. M. Mechanical properties of tri-modal Al matrix composites reinforced by nano- and submicron-sized Al2O3 particulates developed by wet attrition milling and hot extrusion / Materials and Design A. 2010. Vol. 454. P. 1 – 16.

16. Razavi-Tousi S. S., Yazdani-Rad R., Manafi S. A. Effect of volume fraction and particle size of alumina reinforcement on compaction and densification behavior of Al – Al2O3 nanocomposites / Mater. Sci. Engin. A. 2011. Vol. 528. P. 1105 – 1110.

17. Ivanov D. A., Ivanov A. V., Shljapin S. D. Investigation into physicomechanical properties and structure of the Al – Al2O3 composite material fabricated using mechanical treatment of the PAP-2 aluminum powder and reaction sintering of powder billets / Rus. J. Non-Ferrous Met. 2016. Vol. 57. N 2. P. 148 – 156.

18. Ivanov D. A., Shlyapin S. D., Valliano G. E., Akkuzhin N. D., Fedorova L. V. Studying the influence of vacuum heat treatment of PAP-2 powder on its compressibility and properties of sintered material / Tekhnol. Legk. Splavov. 2017. N 3. P. 68 – 74 [in Russian].

19. Barinov S. M., Shevchenko V. Ya. The strength of technical ceramics. — Moscow: Nauka, 1996. — 159 p. [in Russian].

20. Abramov A. A., Tikhomirov M. D. The technology for producing high-quality castings from high-strength cast aluminum alloys / Litei. Proizv. 2007. N 5. P. 29 – 34 [in Russian].

21. Illarionov A. G., Popov A. A. Technology and performance properties of titanium alloys. — Yekaterinburg: Izd. Ural’skogo universiteta, 2014. — 137 p. [in Russian].

22. Rakhimkulov R. R. Comparison of the values of fracture toughness K1c obtained on samples with chevron cutting and according to the standard procedure for steel St3sp / Neftegaz. Delo. 2010. N 2. P. 59 – 69 [in Russian].

23. Shevchenko V. Ya., Barinov S. M. Technical ceramics. — Moscow: Nauka, 1993. — 187 p. [in Russian].


Review

For citations:


Ivanov D.A., Shlyapin S.D., Valiano G.E., Akkuzhin N.D., Fedorova L.V. Study of the crack resistance and fracture mechanism of steel-aluminum composite material. Industrial laboratory. Diagnostics of materials. 2020;86(9):63-69. (In Russ.) https://doi.org/10.26896/1028-6861-2020-86-9-63-69

Views: 513


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)