

Study of corrosion of gas production infrastructure objects in the presence of CO2 by the methods of analytical control
https://doi.org/10.26896/1028-6861-2020-86-10-23-30
Abstract
Promising domestic gas and gas condensate fields are characterized by the presence of CO2 in the composition of the extracted raw materials which (in combination with moisture condensation and a number of other factors) stimulates the intensive development of local corrosion processes). The paper presents the results of studying corrosion of gas production objects using methods of analytical control (gas chromatography with mass spectrometry, X-ray fluorescence spectrometry, X-ray diffraction). It is shown that key parameters (CO2 partial pressure, mineralization, pH factor, total pressure, etc.) should be considered with allowance for their expected changes during the life cycle of the field and production facilities. To determine the ultimate local corrosion rates, corrosion tests were carried out under conditions of moisture condensation. The corrosion development under CO2 conditions is shown to depend on the amount of moisture formed during condensation on metal surfaces, composition and content of the condensate in the vapor phase. Monoethylene (MEG) glycol which is used in gas production as a hydrate formation inhibitor can be also present in the condensed medium. MEG concentration also significantly contributes to the rate of corrosion processes Local carbon dioxide corrosion rate can attain several millimeters per year. Analytical methods can be successfully used in combination with other control methods to predict and monitor a corrosion situation (content of a corrosion inhibitor, presence of the corrosion products or deposits, etc.) at gas production facilities.
About the Authors
R. K. VagapovRussian Federation
Ruslan K. Vagapov
Proektiruemy proezd N 5537, vl. 15, str. 1, pos. Razvilka, s.p. Razvilkovskoe, Leninsky r-n, Moscow obl., 142717
D. N. Zapevalov
Russian Federation
Dmitry N. Zapevalov
Proektiruemy proezd N 5537, vl. 15, str. 1, pos. Razvilka, s.p. Razvilkovskoe, Leninsky r-n, Moscow obl., 142717
K. A. Ibatullin
Russian Federation
Konstantin A. Ibatullin
Proektiruemy proezd N 5537, vl. 15, str. 1, pos. Razvilka, s.p. Razvilkovskoe, Leninsky r-n, Moscow obl., 142717
References
1. Slugin P. P., Polyansky A. V. The optimal method of combating carbon dioxide corrosion of pipelines at the Bovanenkovo oil and gas condensate field / Nauka Tekhn. Gaz. Promyshl. 2018. Vol. 74. N 2. P. 104 – 109 [in Russian].
2. Koryakin A. Yu., Dikamov D. V., Kolinchenko I. V., Yusupov A. D., Zapevalov D. N., Vagapov R. K. Experience of corrosion inhibitors selection to protect the objects of the second site of Achimovsky deposits of Urengoy oil and gas-condensate field from carbon acid corrosion / Oborud. Tekhnol. Neftegaz. Kompl. 2018. N 6. P. 48 – 55. DOI: 10.30713/1999-6934-2018-6-48-55 [in Russian].
3. Fedotova A. I., Vagapov R. K., Zapevalov D. N., Strel’nikova K. O. Choice of gas fields water media in conditions of CO2 presence to assess their corrosion aggressiveness / Zashch. Okruzh. Sredy Neftegaz. Kompl. 2018. N 4. P. 59 – 65. DOI: 10.30713/2411-7013-2018-4-59-65 [in Russian].
4. Zapevalov D. N., Vagapov R. K., Ibatullin K. A. Assessment of the internal corrosion factor of Gazprom’s production facilities with a high carbon dioxide content / Nauka Tekhn. Gaz. Promyshl. 2018. Vol. 75. N 3. P. 59 – 71 [in Russian].
5. Vagapov R. K., Fedotova A. I., Zapevalov D. N., Strel’nikova K. O. Corrosion aggressiveness of various operational factors in hydrocarbon deposits containing carbon dioxide / Vesti Gaz. Nauki. 2019. Vol. 39. N 2. P. 130 – 137 [in Russian].
6. Vagapov R. K., Zapevalov D. N., Ibatullin K. A. Evaluation of Corrosion Resistance of Materials under Conditions of Moisture Condensation in the Presence of Carbon Dioxide / Vopr. Materialoved. 2020. Vol. 101. N 1. P. 163 – 175 [in Russian]. DOI: 10.22349/1994-6716-2020-101-1-163-175.
7. Gunaltun Y., Larrey D., Punpruk S., Suryani S. Design of Multiphase Offshore Gas Pipelines with High Risk of Sweet Top of the Lines Corrosion / NACE Corrosion conference. 2013. P. 2290.
8. Singer M. Study of the Localized Nature of Top of the Line Corrosion in sweet environment / Corrosion. 2017. Vol. 73. N 8. P. 1030 – 1055. DOI: 10.5006/2222.
9. Rosenfeld I. L., Zhigalova K. A. Accelerated Methods of Corrosion Testing of Metals (Theory and Practice). — Moscow: Metallurgiya, 1966. — 347 p. [in Russian].
10. Mikhalkina O. G. Application of X-ray diffraction to studying core and man-caused products / Vesti Gaz. Nauki. 2016. Vol. 28. N 4. P. 96 – 107 [in Russian].
11. Strel’nikova K. O., Vagapov R. K., Zapevalov D. N., Fedotova A. I. The study of inhibitors of carbon dioxide corrosion / Transport Khran. Nefteprod. Uglevodorod. Syr’ya. 2018. N 2. P. 16 – 22. DOI: 10.24411/0131-4270-2018-10203 [in Russian].
12. Vagapov R. K. Application of corrosion inhibitors in oil and gas industries / Korroz. Mater. Zashch. 2011. N 12. P. 26 – 28 [in Russian].
13. Asher S. L., Sun W., Ojifinni R., Pacheco J., Li C., Nelson J., Ling S. Top of the Line Corrosion Prediction in Wet Gas Pipelines / NACE Corrosion conference. 2012. P. C-2012-0001303.
14. Vagapov R. K., Zapevalov D. N. Practical aspects of using diagnostic methods together with other data of corrosion control and with simulation tests during operation of gas production object under corrosion aggressive conditions / Defektoskopiya. 2020. N 7. P. 61 – 76. DOI: 10.31857/S0130308220070076 [in Russian].
15. Guo S., Farelas F., Singer M. Effect of monoethylene glycol on sweet top of line corrosion / NACE Corrosion conference. 2016. P. 7891.
16. Vagapov R. K., Zapevalov D. N. Possibilities of use and selection of the technology of inhibitor protection against corrosion of gas production facilities characterized by the presence of aggressive carbon dioxide / Nauka Tekhn. Gaz. Promyshl. 2020. Vol. 81. N 1. P. 72 – 79 [in Russian].
17. Filippov A. G., Mercheva V. S., Bogachkova L. V., Afanas’eva N. K., Krasil’nikova O. V. Analytical control at choosing an effective corrosion inhibitor for Astrakhanskoye gas condensate field / Gaz. Promyshl. 2007. N 1. P. 80 – 82 [in Russian].
18. Abdullin M. F., Nazarov I. S., Erastov A. S. Component composition determination of some of the corrosion inhibitors by electrospray ionization mass spectrometry / Izv. Ufim. NTs RAN. 2020. N 1. P. 55 – 60. DOI: 10.31040/2222-8349-2020-0-1-55-60 [in Russian].
19. Zadorozhny P. A., Sukhoverhov S. V., Semenova T. L., Markin A. N. Application of high performance liquid chromatography with mass-selective detection for analysis of imidazole-containing inhibitor of corrosion / Vestnik DVO RAN. 2010. N 5. P. 80 – 84 [in Russian].
20. Gough M. A., Haslegrave J. A, Hedges W. M. Modern Instrumental Methods for the Quantitative Determination of Quaternary Ammonium Based Corrosion Inhibitors in Oil Field Brines / 6th International Oilfield Chemicals Symposium. — Gelio, Norway, 1995.
21. Cossar J., Carlile J. A New Method for Oilfield Corrosion Inhibitor Measurement / NACE Corrosion conference. 1993. P. 98.
22. Gough M. A., Mothershaw R. A., Byrne N. E. Molecular Monitoring of Residual Corrosion Inhibitor Actives in Oilfield Fluids: Implications for Inhibitor Performance / NACE Corrosion conference. 1998. P. 33.
Review
For citations:
Vagapov R.K., Zapevalov D.N., Ibatullin K.A. Study of corrosion of gas production infrastructure objects in the presence of CO2 by the methods of analytical control. Industrial laboratory. Diagnostics of materials. 2020;86(10):23-30. (In Russ.) https://doi.org/10.26896/1028-6861-2020-86-10-23-30