

Study of the open porosity of carbon materials using thermoporometry
https://doi.org/10.26896/1028-6861-2020-86-11-28-35
Abstract
Thermoporometry is a calorimetric method for characterizing pore structure from the melting or freezing point depression of a liquid confined in a pore, by the reason of the added contribution of surface curvature to the phase-transition free energy. Porous materials are widely used in the production of noise and vibration-absorbing coatings, thermal insulation, filters, etc. We present the results of studying the porous structure using thermoporometry, a method based on lowering the melting point of the working substance (penetrant) which previously filled micro- and mesopores of the sample under study. The open porosity of carbon materials based on phenol-formaldehyde resins and a pore former obtained after pyrolysis under different conditions of microphase separation induced by polymerization is analyzed. The tests were carried out using a differential scanning calorimeter. Bidistilled water, which has a relatively high value of the enthalpy change upon melting of the crystalline phase is used as a penetrant to lower the error of measurements. Differential and integral curves of the size distribution of micro- and mesopores are presented. It is shown that an increase in the microphase separation temperature entails an increase in the total porosity. Moreover, an increase in the polymerization rate of phenol-formaldehyde resin due to resin modification with m-cresol also facilitated an increase in the cumulative volume of micro- and mesopores. It is shown that replacement of phenol with paracresol leads to an increase in the total porosity even under a significant decrease in resole resin polycondensation rate. The results obtained can be used in the development of carbon matrices with controlled parameters of the mass transfer.
About the Author
M. A. KhaskovRussian Federation
Maxim A. Khaskov
17, ul. Radio, Moscow, 105005
References
1. Kablov E. N. Marketing of material science, aviation construction and industry: the present and the future / Direkt. Market. Sbytu. 2017. Vol. 5 – 6. P. 40 – 44 [in Russian].
2. Petrova G. N., Perfilova D. N., Malyshenok S. V., Kuznetsova K. R. The influence of scale factor on foam-like polyacrylimide / Tr. VIAM. 2018. Vol. 6. Art. 05. P. 39 – 47. DOI: 10.18577/2307-6046-2018-0-6-39-47 [in Russian].
3. Solntsev St. S., Denisova V. S., Rozenenkova V. A. Reactive curing — new direction in the technology of high-temperature composite coatings and materials / Aviats. Mater. Tekhnol. 2017. Vol. S. P. 329 – 343. DOI: 10.18577/2071-9140-2017-0-S-329-343 [in Russian].
4. Fandeev V. P., Samoknina K. S. The investigation methods of pore structures / Naukovedenie. 2015. Vol. 7. N 4. Art. 101. P. 1 – 21 [in Russian].
5. Khaskov M. A., Shestakov A. M., Sorokin O. Yu., Zelenina I. V. Synthesis of carbon matrix with tunable carbide formation ability for reactive infiltration techniques / Ceram. Int. 2020. Vol. 46. N 13. P. 21632 – 21637. DOI: 10.1016/j.ceramint.2020.05.269.
6. Majda D., Zimowska M., Tarach K., Góra-Marek K., Napruszewska B., Michalik-Zym A. Water thermoporosimetry as a tool of characterization of the textural parameters of mesoporous materials. Refinement of the methodology / J. Therm. Anal. Calorim. 2017. Vol. 127. P. 207 – 220. DOI: 10.1007/s10973-016-5400-3.
7. Wulff M. Pore size determination by thermoporometry using acetonitrile / Thermochim. Acta. 2004. Vol. 419. P. 291 – 294. DOI: 10.1016/j.tca.2004.03.006.
8. Riikonen J., Salonen J., Lehto V.-P. Utilising thermoporometry to obtain new insights into nanostructured materials / J. Therm. Anal. Calorim. 2011. Vol. 105. P. 811 – 821. DOI: 10.1007/s10973-010-1167-0.
9. Landry M. R. Thermoporometry by differential scanning calorimetry: experimental considerations and applications / Thermochim. Acta. 2005. Vol. 433. N 1 – 2. P. 27 – 50. DOI: 10.1016/j.tca.2005.02.015.
10. Yamamoto T., Mukai S., Nitta K., Tamon H., Endo A., Ohmori T., Nakaiwa M. Evaluation of porous structure of resorcinol-formaldehyde hydrogels by thermoporometry / Thermochim. Acta. 2005. Vol. 439. P. 74 – 79. DOI: 10.1016/j.tca.2005.09.010.
11. Veselá P., Riikonen J., Nissinen T., Lehto V.-P., Slovák V. Optimisation of thermoporometry measurements to evaluate mesoporous organic and carbon xero-, cryo- and aerogels / Thermochim. Acta. 2015. Vol. 621. P. 81 – 89. DOI: 10.1016/j.tca.2015.10016.
12. Iza M., Woerly S., Danumah C., Kaliaguine S., Bousmina M. Determination of pore size distribution for mesoporous materials and polymeric gels by means of DSC measurements: thermoporometry / Polymer. 2000. Vol. 41. N 15. P. 5885 – 5893. DOI: 10.1016/S0032-3861(99)00776-4.
13. Jabłoński M., Gunko V., Golovan A., Leboda R., Skubiszewska-Zięba J., Pluta R., Turov V. Textural characteristics of model and natural bone tissues and interfacial behavior of bound water / J. Colloid Interface Sci. 2013. Vol. 392. P. 446 – 462. DOI: 10.1016/j.jcis.2012.08.070.
14. Baba M., George S., Gardette J., Lacoste J. Evaluation of Crosslinking in Elastomers Using Thermoporometry, Densimetry and Diffential Scanning Calorimetry Analysis / Rubber Chem. Technol. 2002. Vol. 75. N 1. P. 143 – 154. DOI: 10.5254/1.3547666.
15. Watanabe A., Iiyama T., Kaneko K. Melting temperature elevation of benzene confined in graphitic micropores / Chem. Phys. Lett. 1999. Vol. 305. P. 71 – 74. DOI: 10.1016/S0009-2614(99)00362-0.
16. Khaskov M. A., Gulyaev A. I., Sinyakov S. D., Ponomarenko S. A. The using of thermal analysis methods for study of pore formation in the system resol phenol-formaldehyde resin — Ethylene glycol — p-toluenesulfonyl chloride / Mater. Chem. Phys. 2019. Vol. 233. P. 236 – 241. DOI: 10.1016/j.matchemphys.2019.05.060.
17. Jähnert S., Chávez F., Schaumann G., Schreiber A., Schönhoff M., Findenegg G. Melting and freezing of water in cylindrical silica nanopores / Phys. Chem. Chem. Phys. 2008. Vol. 10. P. 6039 – 6051. DOI: 10.1039/B809438C.
18. Mitchell J., Webber J., Strange J. Nuclear magnetic resonance cryoporometry / Phys. Rep. 2008. Vol. 461. P. 1 – 36. DOI: 10.1016/j.physrep.2008.02.001.
19. Webber J. B. W., Dore J. C. Neutron Diffraction Cryoporometry — A measurement technique for studying mesoporous materials and the phases of contained liquids and their crystalline forms / Nucl. Instr. Meth. Phys. Res. Sect. A. 2008. Vol. 586. P. 356 – 366. DOI: 10.1016/j.nima.2007.12.004.
20. Sliwinska-Bartkowiak M., Dudziak G., Sikorski R., Gras R., Radhakrishnan R., Gubbins K. Melting/freezing behavior of a fluid confined in porous glasses and MCM-41: dielectric spectroscopy and molecular simulation / J. Chem. Phys. 2001. Vol. 114. P. 950 – 962. DOI: 10.1063/1.1329343.
21. Sugiyama T., Atarashi D., Miyauchi M., Sakai E. Analysis pore structure by thermoporometry using water and cyclohexane / Cem. Sci. Concr. Technol. 2012. Vol. 66. N 1. P. 273 – 278. DOI: 10.14250/cement.66.273.
22. Neffati R., Apekis L., Rault J. Size Distribution of Water Droplets in Butyl Rubber Application of DSC in thermoporosimetry / J. Therm. Anal. Calorim. 1998. Vol. 54. P. 741 – 752. DOI: 10.1023/A:1010131601603.
23. Charmas B., Skubiszewska-Zieba J. Application of differential scanning calorimetry to study porous structure of hydrothermally modified silicas / J. Therm. Anal. Calorim. 2017. Vol. 29. P. 23 – 32. DOI: 10.1007/s10973-017-6126-6.
24. Baba M., Nedelec J-M., Lacoste J., Gardette J-L., Morel M. Crosslinking of elastomers resulting from ageing: use of thermoporosimetry to characterise the polymeric network with n-heptane as condensate / Polym. Degrad. Stab. 2003. Vol. 80. N 2 – 3. P. 305 – 313. DOI: 10.1016/S0141-3910(03)00014-4.
25. Endo A., Yamamoto T., Inagi Y., Iwakabe K., Ohmori T. Characterization of Nonfreezable Pore Water in Mesoporous Silica by Thermoporometry / J. Phys. Chem. C. 2008. Vol. 112(24). P. 9034 – 9039. DOI: 10.1021/jp8016248.
26. Quinson J., Dumas J., Serughetti J. Alkoxide silica gel: Porous structure by thermoporometry / J. Non-Cryst. Solids. 1986. Vol. 79. N 3. P. 397 – 404. DOI: 10.1016/0022-3093(86)90236-X.
27. Driemeier C., Mendes F., Oliveira M. Dynamic vapor sorption and thermoporometry to probe water in celluloses / Cellulose. 2012. Vol. 19. P. 1051 – 1063. DOI: 10.1007/s10570-012-9727-z.
28. Maloney T., Paulapuro H., Stenius P. Hydration and swelling of pulp fibers measured with differential scanning calorimetry / Nord. Pulp Pap. Res. J. 1998. Vol. 13. N 1. P. 31 – 35. DOI: 10.3183/npprj-1998-13-01-p031-036.
29. Park S., Venditti R., Jameel H., Pawlak J. Changes in pore size distribution during the drying of cellulose fibers as measured by differential scanning calorimetry / Carbohydr. Polym. 2006. Vol. 66. P. 97 – 103. DOI: 10.1016/j.carbpol.2006.02.026.
30. Kozlowski T., Walaszczyk Ł. Analyzing expanding clays by thermoporometry using a stochastic deconvolution of the DSC signal / Clays Clay Miner. 2014. Vol. 62. N 5. P. 386 – 402. DOI: 10.1346/CCMN.2014.0620503.
31. Luisi M. Characterizing the measurement uncertainty of a high-temperature heat flux differential scanning calorimeter. https://www.tugraz.at/fileadmin/user_upload/Institute/IEP/Thermophysics_Group/Files/DA-LuisiMatteo.pdf (accessed 26.08.2020).
32. Yamamoto T., Endo A., Inagi Y., Ohmori T., Nakaiwa M. Evaluation of thermoporometry for characterization of mesoporous materials / J. Colloid Interface Sci. 2005. Vol. 284. N 2. P. 614 – 620. DOI: 10.1016/j.jcis.2004.10.025.
33. Khaskov M. A., Davydova E. A., Valueva M. I., Sinyakov S. D. Influence of the Reactivity of the Thermosetting Component in the Resol Resin/Ethylene Glycol System on the Properties of Pyrolyzates / Russ. J. Appl. Chem. 2020. Vol. 93. N 2. P. 205 – 213. DOI: 10.31857/S0044461820020073.
34. Khaskov M. A., Sulyanova E. A., Gulyaev A. I., Zelenina I. V. Effect of Microphase Separation Conditions in a Resol Resin/Ethylene Glycol System on the Properties of Its Pyrolysates / Inorg. Mater. 2020. Vol. 56. N 5. P. 483 – 490. DOI: 10.31857/S0002337X20050061.
Review
For citations:
Khaskov M.A. Study of the open porosity of carbon materials using thermoporometry. Industrial laboratory. Diagnostics of materials. 2020;86(11):28-35. (In Russ.) https://doi.org/10.26896/1028-6861-2020-86-11-28-35