

Study of changes in the crystal structure of BaTiO3 under the effect of X-ray radiation
https://doi.org/10.26896/1028-6861-2020-86-11-36-41
Abstract
X-ray diffractometers are widely used in studying the atomic structure of mono- and polycrystalline substances. The radiation source of conventional laboratory diffractometers is a soldered x-ray tube with the maximum power consumption 1 – 3 kW. The radiation spectrum of the tube is determined by the anode material (usually, these are spectrally pure metals Cr, Ni, Fe, Cu, Mo, Ag). The wavelengths of the characteristic radiation range within 0.56 – 2.29 Е. We present the results of studying the effect of X-ray radiation power on the structure of barium titanate. Comparison of the diffraction spectra of BaTiO3 (laminar polydomain ferroelectric single crystal and nanopowder samples) showed that the spectrum structure changes significantly with an increase in the power of X-ray beam (CuKα radiation) from 100 (5 mA, 20 kV) to 800 W (20 mA, 40 kV). For example, a rearrangement of the domain structure and, hence, a change in the dielectric characteristics of the material were observed for BaTiO3 single crystal. The rearrangement was accompanied by the formation of continuous transition zones (between domains) containing a cubic phase. As for the BaTiO3 nanopowder, a change in the structure was observed in the direction of the axis of spontaneous polarization c and an invariance of the structure in the plane a – c. The results obtained can be used to control the physical properties of ferroelectric and ferroelastic materials, in particular, the memristor characteristics of epitaxial films based on YBa2Cu3O7–δ due to changes in their twin structure under X-ray irradiation.
About the Author
I. M. Shmyt’koRussian Federation
Ivan M. Shmyt’ko
2, ul. Akademika Osipyana, Chernogolovka, Moskovskaya obl., 142432
References
1. Bucsek A., Nunn W., Jalan B., James R. Direct conversion of heat to electricity using first-order phase transformations in ferroelectrics / Phys. Rev. Appl. 2019. Vol. 12. 034043. DOI: 10.1103/PhysRevApplied.12.034043.
2. Wegner M., Gu H., James R., Quandt E. Correlation between phase compatibility and efficient energy conversion in Zr-doped Barium Titanate / Sci. Rep. 2020. Vol. 10. 3496. DOI: 10.1038/s41598-020-60335-5.
3. Zhang M., Wang K., Zhou J., et al. Thermally Stable Piezoelectric Properties of (K, Na)NbO3-based Lead-Free Perovskite with Rhombohedral-Tetragonal Coexisting Phase / Acta Mater. 2017. Vol. 122. P. 344 – 351.
4. Farha Jabeen, Raza Shahid, Shahid Khan, Raghvendra Pandey. Unraveling optimized parameters for phase pure rhombohedral perovskite bismuth ferrite without leaching / Appl. Phys. A. 2020. Vol. 126. P. 366. DOI: 10.1007/s00339-020-03556-9.
5. Salman Ali Khan, Fazli Akram, Rizwan Ahmed Malik, et al. Effects of cooling rate on the electrical properties of Pb-free BF-BT ceramics / Ferroelectrics. 2019. Vol. 553. N 1. P. 76 – 82. DOI: 10.1080/00150193.2019.1683498.
6. Dawei Wang, Ge Wang, Shunsuke Murakami, et al. BiFeO3-BaTiO3: a new generation of lead-free electroceramics / J. Adv. Dielectr. 2018. Vol. 8. N 6. 1830004. DOI: 10.1142/S2010135X18300049.
7. Murakami S., Ntaf A., Wang D., et al. Optimising dopants and properties in BiMeO3 (Me = Al, Ga, Sc, Y, Mg2/3Nb1/3, Zn2/3Nb1/3, Zn1/2Ti1/2) lead-free BaTiO3-BiFeO3 based ceramics for actuator applications / J. Eur. Ceram. Soc. 2018. Vol. 38. P. 4220 – 4231. DOI: 10.1016/j.jeurceramsoc.2018.05.019.
8. Malik R., Hussain A., Song T., et al. Enhanced electromechanical properties of (1 – x)BiFeO3-BaTiO3–xLiNbO3 ceramics by quenching process / Ceram. Int. 2017. Vol. 43. DOI: 10.1016/j.ceramint.2017.05.298.
9. Ilkan Calisir I., Amirov A., Kleppe A., et al. Optimisation of functional properties in lead-free BiFeO3-BaTiO3 ceramics through La substitution strategy / J. Mater. Chem. A. 2018. Vol. 6(13). DOI: 10.1039/C7TA09497C.
10. Yanfeng Qin, Jie Yang, Pan Xiong, et al. The effects of quenching on electrical properties, and leakage behaviors of 0.67BiFeO3–0.33BaTiO3 solid solutions / J. Mater. Sci. Mater. Electron. 2018. Vol. 29. N 9. P. 7311 – 7317. DOI: 10.1007/s10854-018-8720-1.
11. Salman Ali Khan, Fazli Akram, Rizwan Ahmed Malik, et al. Piezoelectric and ferroelectric properties of lead free Ga-modified 0.65BiFeO3–0.35BaTiO3 ceramics by water quenching process / Ferroelectrics. 2019. Vol. 541. P. 54 – 60. DOI: 10.1080/00150193.2019.1574642.
12. Lei Cao, Changrong Zhou, Jiwen Xu, et al. Effect of poling on polarization alignment, dielectric behavior, and piezoelectricity development in polycrystalline BiFeO3-BaTiO3 ceramics / Phys. Status Solid. (A) Appl. Mater. 2016. Vol. 213(1). DOI: 10.1002/pssa.201532373.
13. Salman Ali Khan, Fazli Akram, Jihee Bae, et al. Enhancing Piezoelectric Coefficient with Relative High Curie Temperature in BiAlO3-modified BiFeO3-BaTiO3 Lead-free Ceramics / Solid State Sci. 2019. Vol. 98. DOI: 10.1016/j.solidstatesciences.2019.106040.
14. Abrosimova G. E., Shmytko I. M. Use of single-crystal cuvettes with properties of the optical shutter on x-ray diffractometers / Zavod. Lab. Diagn. Mater. 2018. Vol. 84. N 6. P. 34 – 37. DOI: 10.26896/1028-6861-2018-84-6-34-37 [in Russian].
15. Afonikova N. S., Borovikov V. V., Shmytko I. M. Structure of interphase and interdomain boundaries in KDP / Fiz. Tv. Tela. 1987. Vol. 29. P. 813 – 817 [in Russian].
16. Shmytko I. M., Shekhtman V. Sh. The Real Structure of High-Tc Superconductors. Vol. 23. — Berlin – Heidelberg: Springer-Verlag, 1993. P. 23 – 43.
17. Sidorkin A. S. Domain structure in ferroelectrics and related materials. — Moscow: Fizmatlit, 2000. — 240 p. [in Russian].
18. Shmytko I. M., Frolov D. D., Aronin A. S., Ganeeva G. R., Kedrov V. V. Formation of new structural States in BaTiO3 pressed nanopowders / Fiz. Tv. Tela. 2017. Vol. 59. P. 1196 – 1205. DOI: 10.1134/S1063783417060269 [in Russian].
Review
For citations:
Shmyt’ko I.M. Study of changes in the crystal structure of BaTiO3 under the effect of X-ray radiation. Industrial laboratory. Diagnostics of materials. 2020;86(11):36-41. (In Russ.) https://doi.org/10.26896/1028-6861-2020-86-11-36-41