

Study of the properties of large-sized blanks of turbine blades made of 15Kh11MF-Sh steel depending on the method of obtaining the initial metal
https://doi.org/10.26896/1028-6861-2020-86-11-42-47
Abstract
We consider the manufacturing process of forgings for turbine blades of extra-large dimensions (length >2 m) from electroslag remelting steel 15H11MF-Sh. With an increase of the workpiece dimensions (weight >450 kg), we face the problem of choosing the technology for obtaining the original billet. The production technology is known to affect the structure of the material and, as a consequence, the final properties of the product. We present the results of studying the influence of the method of obtaining the original metal blanks (hot-rolled steel bars and forged billets) on the properties of large-sized forgings of turbine blades. The mechanical characteristics, microstructure properties, chemical composition and content of δ-ferrite were determined by examining the initial samples of long products and forged rods. It is shown that billet in the forged state exhibit higher strength characteristics. However, after the stamping process, the properties of the blades equalize, i.e., after stamping and heat treatment, the same structure is formed, regardless of the method of obtaining the original workpiece. The results obtained can be used in the serial production of large-sized turbine blades of a new profile.
About the Authors
M. O. SmirnovRussian Federation
Maksim O. Smirnov
29, ul. Politehnicheskaya, St. Petersburg, 195251
A. M. Zolotov
Russian Federation
Aleksandr M. Zolotov
29, ul. Politehnicheskaya, St. Petersburg, 195251
T. A. Chizhik
Russian Federation
Tatiana A. Chizhik
3 lit. A, ul. Vatutina, St. Petersburg, 195009
References
1. Misek T., Kubin Z. Static and Dynamic Analysis of 48’’ Steel Last Stage Blade for Steam Turbine / Proceedings of ASME Turbo Expo 2009: Power for Land, Sea and Air. — Orlando, Florida, USA, 2009. DOI: 10.1115/GT2009-59085.
2. Jaffee R. Titanium steam turbine blading / Prep. for the Electric power research inst. — New York: Pergamon press, 1990. — 459 p.
3. Dub A. V., Skorobogatykh V. N. Materials science and technological base for the creation of advanced thermal power equipment / Teploénergetika. 2012. N 4. P. 7 – 13 [in Russian].
4. Helis L., Toda Y., Hara T., Miyazaki H., Abe F. Effect of cobalt on the microstructure of tempered martensitic 9Cr steel for ultra-supercritical power plants / Mater. Sci. Eng. 2009. A510 – 511. P. 88 – 94. DOI: 10.1016/j.msea.2008.04.131.
5. Viswanathan R., Bakker W. Materials for Ultrasupercritical Coal Power Plants — Turbine Materials. Part 2 / J. Mater. Eng. Perform. 2001. Vol. 10. N 1. P. 96 – 101.
6. Dashunin N. V., Manilova E. P., Rybnikov A. I. Phase and structural transformations in 12% chromium steel ÉP428 due to long-term operation of moving blades / Metal Sci. Heat Treatment. 2007. Vol. 49. Issue 1 – 2. P. 17 – 23. DOI: 10.1007/s11041-007-0003-z.
7. Das G., Chowdhury S. Gh., Ray A. K., et al. Turbine blade failure in a thermal power plant / Eng. Failure Anal. 2003. Vol. 10. Issue 1. P. 85 – 91. DOI: 10.1016/S1350-6307(02)00022-5.
8. Rudskoi A. I., Kolbasnikov N. G., Toropov S. S. Structure, ductility and fracture of steels. Experiment and Simulation. — St. Petersburg: Izd. Politekhn. Univ., 2016. — 328 p. [in Russian].
9. Kodzhaspirov G. E., Rudskoi A. I., Rybin V. V. Physical foundations and resource-saving technologies for manufacturing products by plastic deformation. — St. Petersburg: Nauka, 2006. — 350 p. [in Russian].
10. Bogatov A. A., Nukhov D. S. Forging of strip by alternating deformation, with unchanged size and shape / Steel in Translation. 2015. Vol. 45. N 6. P. 412 – 417. DOI: 10.3103/S0967091215060054.
11. Tyurin V. A. Innovative forging technology / Kuzn.-Shtampov. Proizv. 2006. N 5. P. 27 – 29 [in Russian].
12. Solomonov K. N., Kostarev K. V., Abashkin V. P. Modeling of processes of die forging and forging of flat blanks: monograph. — Moscow: Izd. MISiS, 2008. — 128 p. [in Russian].
13. Korneev A. E., Gromov A. F., Kiselev A. M. Influence of delta ferrite on the properties of martensitic steels / Metalloved. Term. Obrab. Met. 2013. N 8. P. 46 – 50 [in Russian].
14. Wang P. Effect of delta ferrite on impact properties of low carbon 13Cr – 4Ni martensitic stainless steel / Mater. Sci. Eng. A. 2010. N 527. P. 3210 – 3216. DOI: 10.1016/j.msea.2010.01.085.
15. Galunenko I. P., Sinyavina R. A., Lobzhanidze R. B. Decrease in delta-ferrite content in steel 1Kh16N4BYu / Metalloved. Term. Obrab. Met. 1972. N 11. P. 73 [in Russian].
16. Anderko K., Schäfer L., Materna-Morris E. Effect of the δ-ferrite phase on the impact properties of martensitic chromium steels / J. Nucl. Mater. 1991. Vol. 179. P. 492 – 495.
17. Chizhikov Yu. M. Pressure treatment processes for alloy steels and alloys. — Moscow: Metallurgiya, 1965. — 500 p. [in Russian].
18. Dzugutov M. Ya. Ductility and deformability of high-alloy steels and alloys. — Moscow: Metallurgiya, 1990. — 303 p. [in Russian].
19. Razuvaev E. I., Bakradze M. M., Sidorov S. A. Influence of delta-ferrite on the impact toughness of steel 10Kh12NVMFA (ÉI962) at hot deformation temperatures / Stal’. 2016. N 9. P. 58 – 61 [in Russian].
20. Smirnov M. O., Chizhik T. A., Zolotov A. M., Mishin V. V., Shishov I. A. Investigation and determination of the parameters of forging a turbine blade on a steam-air hammer / Stal’. 2017. N 12. P. 50 – 53 [in Russian].
21. Smirnov M. O., Chizhik T. A., Zolotov A. M., Mishin V. V., Shishov I. A. Application of mathematical modeling for the manufacture of large-sized forgings of turbine blades from heat-resistant steel / Tyazh. Mashinostr. 2018. N 4. P. 29 – 33 [in Russian].
22. Rudskoi A. I., Lunev V. A. Theory and technology of rolling production. — St. Petersburg: Nauka, 2005. — 540 p. [in Russian].
23. Singh R., Kishore R., Dey G., Batra I., Dasgupta P. Strengthening of a 12CrMoV turbine blade steel by retemperin / J. Mater. Eng. Perform. 1994. Vol. 3. Issue 3. P. 350 – 355.
24. Gorynin V. I., Kondratev S. Yu., Olenin M. I. Influence of homogenizing annealing on the nature of fracture of the welded joint of steel 15Kh11MFB / Zagotovit. Proizv. Mashinostr. 2017. N 9. P. 414 – 419 [in Russian].
25. Gorynin V. I., Olenin M. I., Stolny V. I. Effect of homogenizing annealing on the brittle fracture resistance of the welded joint of steel 15Kh11MFB / Metalloved. Term. Obrab. Met. 2018. N 1. P. 50 – 54 [in Russian].
26. Chernyavskaya S. G., Krasnikova S. I., Sulamenko A. V. Change in delta ferrite in steel 1Kh16N4B during homogenization / Metalloved. Term. Obrab. Met. 1972. N 9. P. 66 – 67 [in Russian].
Review
For citations:
Smirnov M.O., Zolotov A.M., Chizhik T.A. Study of the properties of large-sized blanks of turbine blades made of 15Kh11MF-Sh steel depending on the method of obtaining the initial metal. Industrial laboratory. Diagnostics of materials. 2020;86(11):42-47. (In Russ.) https://doi.org/10.26896/1028-6861-2020-86-11-42-47