Preview

Заводская лаборатория. Диагностика материалов

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Quantitative texture analysis of a hydroxyapatite coatings plasma-sprayed on titanium substrates at different temperatures

https://doi.org/10.26896/1028-6861-2020-86-12-23-31

Полный текст:

Аннотация

Artificial hydroxyapatite exhibits an excellent biocompatibility with tissues of human body. However, poor mechanical properties of hydroxyapatites and low reliability in wet environments restrict their use. These limitations can be overcome by applying the hydroxyapatite as a coating onto metallic implants. X-ray diffraction analysis (restoration of orientation distribution function from pole figures and the Rietveld method) and scanning electron microscopy have been used to study thick (~330 μm) plasma-sprayed hydroxyapatite coatings. The coatings were deposited onto Ti – 2Al – 1Mn alloy substrates, one of which was held at room temperature (20°C) whereas the other substrate was preheated to 550°C. The texture of the coating deposited on substrate held at room temperature is characterized by the (001)[510] orientation, the volume fraction of which is 0.08, while the coating deposited on preheated substrate has the (001)[410] orientation, the volume fraction of which is 0.10. Results of texture analysis are qualitatively supported by the Rietveld refinement data. The problem of the formation of basal texture in plasma-sprayed hydroxyapatite coatings is discussed in terms of quantitative texture analysis in relation to the differences in the substrate temperature and spraying parameters. It was concluded that the quantitative texture analysis is of importance for deeper understanding the effect of spraying parameters on the formation of hydroxyapatite coatings.

Об авторах

V. F. Shamray
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Россия

Vladimir F. Shamray

49, Leninsky prospect, Moscow, 119334



V. N. Serebryany
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Россия

Vladimir N. Serebryany

49, Leninsky prospect, Moscow, 119334



A. S. Kolyanova
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Россия

Alexandra S. Kolyanova

49, Leninsky prospect, Moscow, 119334



V. I. Kalita
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Россия

Vasiliy I. Kalita

49, Leninsky prospect, Moscow, 119334



V. S. Komlev
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Россия

Vladimir S. Komlev

49, Leninsky prospect, Moscow, 119334



S. M. Barinov
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Россия

Sergey M. Barinov

49, Leninsky prospect, Moscow, 119334



D. I. Komlev
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Россия

Dmitriy I. Komlev

49, Leninsky prospect, Moscow, 119334



M. V. Barybin
Department of Chemistry, University of Kansas
Соединённые Штаты Америки

Mikhail V. Barybin

1567 Irving Hill Road, Lawrence, KS 66045



Список литературы

1. Berndt C., Hasan F., Tietz U., Schmitz K.-P. A review of hydroxyapatite coatings manufactured by thermal spray / B. Ben-Nissan, ed. Advances in Calcium Phosphate Biomaterials. — Berlin – Heidelberg: Springer, 2004. P. 267 – 329.

2. Sun L., Berndt C., Gross K., Kucuk A. Material Fundamentals and Clinical Performance of Plasma-Sprayed Hydroxyapatite Coatings: a review / J. Biomed. Mater. Res. Part B. 2001. Vol. 58. N 6. P. 570 – 592. DOI: 10.1002/jbm.1056.

3. Suchanek W., Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants / J. Mater. Res. 1998. Vol. 13. N 1. P. 94 – 117. DOI: 10.1557/JMR.1998.0015.

4. Kim H., Camata R., Chowdhury S., Vohra Y. In Vitro Dissolution and Mechanical Behavior of c-axis Preferentially Oriented Hydroxyapatite Thin Films Fabricated by Pulsed Laser Deposition / Acta Biomater. 2010. Vol. 6. N 8. P. 3234 – 3241. DOI: 10.1016/j.actbio.2010.02.031.

5. Ducheyne P., Healy K. The effect of plasma-sprayed calcium phosphate ceramic coatings on the metal ion release from porous titanium and cobalt-chromium alloys / J. Biomed. Mater. Res. 1988. Vol. 22. N 12. P. 1137 – 1163. DOI: 10.1002/jbm.820221207.

6. Dorozhkin S. V. Calcium Orthophosphate-Based Biocomposites and Hybrid Biomaterials / J. Mater. Sci. 2009. Vol. 44. N 9. P. 2343 – 2387. DOI: 10.1007/s10853-008-3124-x.

7. Mohseni E., Zalnezhad E., Bushroa A. Comparative investigation on the adhesion of hydroxyapatite coating on Ti – 6Al – 4V implant: a review paper / Int. J. Adhes. Adhes. 2014. Vol. 48. P. 238 – 257. DOI: 10.1016/j.ijadhadh.2013.09.030.

8. Sun L., Berndt C., Gross K., Kucuk A. Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review / J. Biomed. Mater. Res. 2001. Vol. 58. N 5. P. 570 – 592. DOI: 10.1002/jbm.1056.

9. Engler O., Randle V. Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping. — Boca Raton – London – New York: CRC Press. Taylor & Francis Group, 2009. — 488 p.

10. Liu X., He D., Zhou Z., Wang G., et al. Characteristics of (002) Oriented Hydroxyapatite Coatings Deposited by Atmospheric Plasma Spraying / Coatings. 2018. Vol. 8. N 8. P. 258. DOI: 10.3390/coatings8080258.

11. Surmenev R. A., Surmeneva M. A., Ivanova A. A. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis: a review / Acta Biomater. 2014. Vol. 10. N 2. P. 557 – 579. DOI: 10.1016/j.actbio.2013.10.036.

12. Levingstone T., Ardhaoui M., Benyounis K., Looney L., et al. Plasma sprayed hydroxyapatite coatings: Understanding process relationships using design of experiment analysis. / Surf. Coat. Technol. 2015. Vol. 283. P. 29 – 36. DOI: 10.1016/j.surfcoat.2015.10.044.

13. Mittal M., Nath S., Prakash S. Splat formation and degradation of hydroxyapatite during plasma spraying process / Adv. Mater. Sci. 2011. Vol. 11. N 2. P. 26 – 36. DOI: 10.2478/v10077-011-0008-6.

14. Pawlowski L. The Science and Engineering of Thermal Spray Coatings. 2nd edition. — Chichester: John Wiley & Sons Ltd, 2008. — 626 p.

15. Heimann R. B. Plasma-Sprayed Hydroxylapatite Coatings as Biocompatible Intermediaries Between Inorganic Implant Surfaces and Living Tissue / J. Therm. Spray Technol. 2018. Vol. 27. N 8. P. 1212 – 1237. DOI: 10.1007/s11666-018-0737-8.

16. Liu X., He D., Zhou Z., Wang G., et al. Atmospheric Plasma-Sprayed Hydroxyapatite Coatings with (002) Texture / J. Therm. Spray Technol. 2018. Vol. 27. N 8. P. 1291 – 1301. DOI: 10.1007/s11666-018-0768-1.

17. Wang Y., Fan T., Zhou Z., He D. Hydroxyapatite coating with strong (002) crystallographic texture deposited by micro-plasma spraying / Mater. Lett. 2016. Vol. 185. P. 484 – 487. DOI: 10.1016/j.matlet.2016.09.068.

18. Wang Y., Liu X., Fan T., Tan Z., et al. In vitro evaluation of hydroxyapatite coatings with (002) crystallographic texture deposited by micro-plasma spraying / Mater. Sci. Eng. C. 2017. Vol. 75. P. 596 – 601. DOI: 10.1016/j.msec.2017.02.119.

19. Shamray V. F., Sirotinkin V. P., Smirnov I. V., Kalita V. I., et al. Structure of the hydroxyapatite plasma-sprayed coatings deposited on pre-heated titanium substrates / Ceram. Int. 2017. Vol. 43. N 12. P. 9105 – 9109. DOI: 10.1016/j.ceramint.2017.04.057.

20. Liu X., He D., Wang Y., Zhou Z., et al. The Influence of Spray Parameters on the Characteristics of Hydroxyapatite In-Flight Particles, Splats and Coatings by Micro-plasma Spraying / J. Therm. Spray Technol. 2018. Vol. 27. N 4. P. 667 – 679. DOI: 10.1007/s11666-018-0698-y.

21. Bunge H. J. Texture Analysis in Materials Science: Mathematical Methods. — London: Butterworths, 1982. — 595 p.

22. Park N., Klein H., Dahlem-Klein E. Program System: Physical Properties of Textured Materials. 2nd edition. — Göttingen: Curvillier Verlag, 2001. — 162 p.

23. Kalita V. I., Komlev D. I., Komlev V. S., Fedotov A. Yu., et al. Hydroxyapatite-Based Coatings for Intraosteal Implants / Inorg. Mater. Appl. Res. 2016. Vol. 7. N 4. P. 486 – 492. DOI: 10.1134/S2075113316040134.

24. Kalita V. I., Komlev D. I., Komlev V. S., Radyuk A. A. The shear strength of three-dimensional capillary-porous titanium coatings for intraosseous implants / Mater. Sci. Eng. C. 2016. Vol. 60. P. 255 – 259. DOI: 10.1016/j.msec.2015.11.033.

25. Barinov S. M., Komlev V. S. Bioceramics Based on Calcium Phosphates. — Moscow: Nauka, 2005. — 204 p. [in Russian].

26. Rietveld H. M. A profile refinement method for nuclear and magnetic structures / J. Appl. Cryst. 1969. Vol. 2. P. 65 – 71.

27. Petricek V., Dusek M. JANA98. The Crystallographic Computing System. — Praha: Institute of Physics Academy of Sciences of the Czech Republic, 2000. — 354 p.

28. Serebryany V. N., Kurtasov S. F., Savyolova T. I. Pole Figure Measurement Plan Influence on Accuracy ODF Coefficients Determined by Modified Harmonic Method / Mater. Sci. Forum. 2005. Vol. 495 – 497. P. 1693 – 1700. DOI: 10.4028/www.scientific.net/MSF.495-497.1693.

29. Savyolova T. I., Kurtasov S. F. ODF Restoration by Orientations Grid / Mater. Sci. Forum. 2005. Vol. 495 – 497. P. 301 – 306. DOI: 10.4028/www.scientific.net/MSF.495-497.301.

30. Cho J. H., Rollett A. D., Oh K. H. Determination of Volume Fractions of Texture Components with Standard Distributions in Euler Space / Metall. Mater. Trans. A. 2004. Vol. 35. N 3. P. 1075 – 1086. DOI: 10.1007/s11661-004-0033-8.

31. Demnati I., Grossin D., Combes Ch., Rey Ch. Plasma-Sprayed Apatite Coatings: Review of Physical-Chemical Characteristics and Their Biological Consequences / J. Med. Biol. Eng. 2014. Vol. 34. N 1. P. 1 – 7. DOI: 10.5405/jmbe.1459.

32. Gross K. A., Berndt C. C. Thermal processing of hydroxyapatite for coating production / J. Biomed. Mater. Res. 1998. Vol. 39. P. 580 – 587. DOI: 10.1002/(SICI)1097-4636(19980315) 39:4<580::AID-JBM12>3.0.CO; 2-B.

33. Liao C. J., Lin F. H., Chen K. S., Sun J. S. Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere / Biomaterials. 1999. Vol. 20. N 19. P. 1807 – 1813. DOI: 10.1016/S0142-9612(99)00076-9.

34. Baur W. Y. The Geometry of Polyhedral Distortions. Predictive Relationships for the Phosphate Group / Acta Crystallogr. Sect. B: Struct. Sci. Cryst. Eng. Mater. 1974. Vol. 30. N 5. P. 1195 – 1215. DOI: 10.1107/S0567740874004560.


Для цитирования:


Shamray V.F., Serebryany V.N., Kolyanova A.S., Kalita V.I., Komlev V.S., Barinov S.M., Komlev D.I., Barybin M.V. Quantitative texture analysis of a hydroxyapatite coatings plasma-sprayed on titanium substrates at different temperatures. Заводская лаборатория. Диагностика материалов. 2020;86(12):23-31. https://doi.org/10.26896/1028-6861-2020-86-12-23-31

For citation:


Shamray V.F., Serebryany V.N., Kolyanova A.S., Kalita V.I., Komlev V.S., Barinov S.M., Komlev D.I., Barybin M.V. Quantitative texture analysis of a hydroxyapatite coatings plasma-sprayed on titanium substrates at different temperatures. Industrial laboratory. Diagnostics of materials. 2020;86(12):23-31. https://doi.org/10.26896/1028-6861-2020-86-12-23-31

Просмотров: 124


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)