Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Study of the texture of polycrystalline FCC materials using one incomplete direct pole figure

https://doi.org/10.26896/1028-6861-2020-86-12-32-39

Abstract

The article deals with the algorithm for texture analysis of polycrystalline materials using one direct pole figure (DPF). It is shown that the incomplete direct polar figure {111} for fcc materials contains the necessary information about the material texture. The algorithm provides identification of the preferred texture components in a multicomponent texture material and determination of their properties. The proposed algorithm is as follows. The upper hemisphere of the digital representation of the DPF is scanned by a polar complex of vectors that are normal to the reflection planes. Then the reliability parameters for each orientation are calculated and a set of the most reliable orientations is formed. The chosen orientations are recalculated to the Rodrigues space wherein the preferred texture components are formed by clustering. At the same time, an iterative algorithm with symmetry operators is used to avoid the umklapp effect. Each texture component is represented by the following parameters: Rodrigues mean vector, Miller indices, and Euler angles. The share and scattering of the texture component are also calculated. A method for selecting the optimal number of clusters providing presentation of the texture with the desired degree of detail is proposed. This is achieved by comparing two incomplete direct pole figures taken for {111} and {200} to select the maximum cluster scattering value on which the number of formed predominant texture components depend. The developed algorithm seems promising for rapid texture analysis, in analysis of sharp and weak textures and when there are less than three DPFs.

About the Authors

S. M. Mokrova
Udmurt Federal Researcher Center, RAS
Russian Federation

Svetlana M. Mokrova

34, ul. T. Baramzinoy, Izhevsk, 426067



V. N. Milich
Udmurt Federal Researcher Center, RAS
Russian Federation

Vladimir N. Milich

34, ul. T. Baramzinoy, Izhevsk, 426067



References

1. Grechnikov F. V., Aryshensky V. Yu., Erisov Ya. A. Designing of optimal structure crystallography of engineering materials / Izv. Samar. NTs RAN. 2018. Vol. 20. N 4. P. 5 – 12 [in Russian].

2. Umansky Ya. S., Skakov Yu. A., Ivanov A. N., Rastorguev L. N. Crystallography, X-ray, and electron microscopy. — Moscow: Metallurgiya, 1982. — 632 p. [in Russian].

3. Gong Z., Billinge S. Atomic pair distribution functions (PDFs) from textured polycrystalline samples: fundamentals / Acta Crystallogr. Sect. A. 2018. P. 1 – 12. DOI: arXiv:1805. 10342v1 [cond-mat.mtrl-sci].

4. Bunge H. J. Physical versus mathematical aspects in texture analysis / Textures Microstr. 1996. Vol. 25. P. 71 – 108. DOI: 10.1155/TSM.25.7.

5. Danilov S. V., Reznik P. L., Lobanov M. L., et al. Influence of hot rolling on mechanical properties anisotropy of 6061 aluminum alloy / Vestn. YuUrGU. Ser. Metallurg. 2017. Vol. 17. N 1. P. 73 – 80. DOI: 10.14529/met170109 [in Russian].

6. Guilmeau E., Henrist C., Suzuki T., et al. Texture of Alumina by neutron diffraction and SEM-EBSD / Textures of Materials. 2005. P. 1395 – 1400. DOI: 10.4028/www.scientific.net/MSF.495-497.1395.

7. Savelova T. I., Ivanova T. M. Methods for Recovery of the Function of Orientation Distribution Using Pole Figures (review) / Zavod. Lab. Diagn. Mater. 2008. Vol. 74. N 7. P. 25 – 33 [in Russian].

8. Vilenkin N. Ya. Special function and theory of group presentation. — Moscow: Nauka, 1965. — 596 p. [in Russian].

9. Mokrova S. M., Milich V. N. The method for decoding textural X-ray diffraction data using one direct polar figure based on an estimate of the crystallographic orientation reliability / Khim. Fiz. Mezosk. 2018. Vol. 20. N 1. P. 151 – 164 [in Russian].

10. Mokrova S. M., Petrov R. P., Milich V. N. Determination of the texture of polycrystalline materials using an algorithm of object-vector representation of reflection planes and visualization of the results in Rodrigues / Vestn. Udmurt. Univ. Matem. Mekh. Komp. Nauki. 2016. Vol. 26. N 3. P. 336 – 344 [in Russian].

11. Frank F. C. Orientation Mapping / Metallurg. Trans. A. 1988. Vol. 19. P. 403 – 408. DOI: 10.1007/BF02649253.

12. Glez J., Driver J. Orientation distribution analysis in deformed grains / J. Appl. Cryst. 2001. Vol. 34. P. 280 – 288. DOI: 10.1107/S0021889801003077.

13. Tu G., Gonsales P. Pattern recognition principles. — Moscow: Mir, 1978. — 412 p. [Russian translation].

14. Mondal C., Singh A., Mukhopadhyay A., Chattopadhyay K. Formation of a single, rotated-Brass {110} (556) texture by hot cross-rolling of an Al – Zn – Mg – Cu – Zr alloy / Scripta Mater. 2011. Vol. 64. P. 446 – 449. DOI: 10.1016/j.scriptamat.2010.11.006.

15. Titorov D. B., Volkov V. A., Titorova D. V., et al. Texture transformations upon annealing of aluminum foils / FMM. 2006. Vol. 102. N 1. P. 1 – 7. DOI: 10.1134/S0031918X06070118 [in Russian].

16. Zorina M. A., Danilov S. V., Rusakov G. M., Lobanov M. L. Relationship between deformation and recrystallization textures in commercially pure aluminium / YuUrGU. Ser. Metallurg. 2017. Vol. 17. N 3. P. 73 – 81 [in Russian].


Review

For citations:


Mokrova S.M., Milich V.N. Study of the texture of polycrystalline FCC materials using one incomplete direct pole figure. Industrial laboratory. Diagnostics of materials. 2020;86(12):32-39. (In Russ.) https://doi.org/10.26896/1028-6861-2020-86-12-32-39

Views: 438


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)