Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Analysis of the topography of magnetic flux leakage in ferromagnetic products

https://doi.org/10.26896/1028-6861-2021-87-2-33-37

Abstract

An urgent problem of non-destructive testing is measuring (or calculating) of the magnetic fields both inside and outside the ferromagnetic products. Determination of the parameters of defects is significantly complicated by the fact that ferromagnetic products can be made from different steel grades. Moreover, when calculating the magnetic fields of defects, it is necessary to take into account the nonlinear character of the dependence of the magnetization M and magnetic permeability μ on the magnetic field strength. At the same time, computer modeling provides an opportunity to study magnetic fields near the defects of different shape, orientation and size. We present the results of studying the topography of the magnetic fields of defects belonging to three classes: surface defects (cracks), inclusions, and extended subsurface defects. The distinguishing features of the defects and the algorithm providing assignment of the defect to a certain class using data of analysis of magnetic flux leakage with a subsequent choice of the appropriate approach to calculating the parameters of the defect are presented. A technique, based on determining the extrema of the normal component of magnetic fields is proposed to estimate the direction of inclination of the surface defects and extended subsurface defects (longitudinal delamination) in a ferromagnetic plate. The obtained results can be used for structuring data on the fields of defects of different classes and developing a software on their base for nondestructive measuring devices.

About the Authors

A. P. Novoslugina
M. N. Mikheev Institute of Metal Physics, Ural Branch of RAS
Russian Federation
18, ul. S. Kovalevskoy, Yekaterinburg, 620108, Russia


Ya. G. Smorodinsky
M. N. Mikheev Institute of Metal Physics, Ural Branch of RAS; The First President of Russia B. N. Yeltsin Ural Federal University,
Russian Federation

18, ul. S. Kovalevskoy, Yekaterinburg, 620108, Russia

19, ul. Mira, Yekaterinburg, 620002, Russia



References

1. Förster F. Non-destructive testing by the method of magnetic leakage fields. Theoretical and experimental basis for detecting surface defects of finite and infinite depth / Defektoskopiya. 1982. N 11. P. 3 – 25 [in Russian].

2. Pashagin A. I., Shcherbinin V. E., Donskoi S. A. Investigation of the magnetic fields of surface defects by combined magnetization of products / Defektoskopiya. 1983. N 2. P. 75 – 81 [in Russian].

3. Shcherbinin V. E., Gorkunov É. S. Magnetic control of material quality. — Yekaterinburg: Izd. UrO RAN, 1996. — 264 p. [in Russian].

4. Cherepanov A. A., Krotov L. N., Krotova E. L. Mathematical modeling of determining the geometric parameters of internal defects of various forms by magnetic flaw detection / Perspekt. Nauki. 2013. N 12(51). P. 60 – 63 [in Russian].

5. Kushnev A. V., Novikov V. A. Analysis of defect models in theoretical studies of scattering magnetic fields arising from the magnetization of ferromagnetic objects / Vestn. Belorus.-Ross. Univ. 2014. N 1. P. 95 – 105 [in Russian].

6. Shur M. L., Novoslugina A. P., Smorodinskii Ya. G. Questions of the theory and calculation of magnetostatic fields in ferromagnets / Russ. J. Nondestruct. Testing. 2014. Vol. 50. N 7. P. 402 – 412. DOI: 10.1134/S1061830914070092

7. Krapivskii E. I., Abakumov A. A., Venkov Yu. A. An experimental study of the magnetic field of scattering from pipeline defects / Gaz. Promyshl. 2015. N 2(718). P. 64 – 66 [in Russian].

8. Dyakin V. V., Kudryashova O. V., Raevskii V. Ya. One approach to solving the basic equation of magnetostatics in the case of nonhomogeneous magnets / Theor. Math. Phys. 2016. Vol. 187. N 1. P. 525 – 538. DOI: 10.1134/S0040577916040073

9. Gobov Yu. L., Nikitin A. V., Popov S. E. Solving the inverse geometric problem of magnetostatics for corrosion defects / Russ. J. Nondestruct. Testing. 2018. Vol. 54. N 12. P. 726 – 732. DOI: 10.1134/S1061830918100042

10. Dyakin V. V., Kudryashova O. V., Raevskii V. Ya. Stray field of plate with a surface defect in a homogeneous external field / Russ. J. Nondestruct. Testing. 2018. Vol. 54. N 12. P. 840 – 848. DOI: 10.1134/S1061830918120033

11. Yan M., Udpa S., Mandayam S., Sun Y., Sacks P., Lord W. Solution of inverse problems in Electromagnetic NDE using finite element methods / IEEE Transactions on Magnetics. 1998. Vol. 34. N 5. P. 2924 – 2927. DOI: 10.1109/20.717682

12. Amineh R. K., Koziel S., Nakolaeva N. K., Bandler J. W., Reilly J. P. A space mapping methodology for defect characterization from magnetic flux leakage measurements / IEEE Transactions on Magnetics. 2008. Vol. 44. N 8. P. 2058 – 2065. DOI: 10.1109/TMAG.2008.923228

13. Galchenko V. Ya., Ostapuschenko D. L., Vorobyov M. A. Computer analysis of the configuration of the magnetic fields of surface discontinuity flaws of finite dimensions in a ferromagnetic plate of finite dimensions by the spatial integral equation method / Russ. J. Nondestruct. Testing. 2009. Vol. 45. N 3. P. 191 – 198. DOI: 10.1134/S1061830909030061

14. Galchenko V. Ya., Ostapuschenko D. L., Vorobyov M. A. Computer analysis of the configurations of magnetic fields of subsurface discontinuities of finite dimensions and arbitrary shapes in tested objects of finite length by the method of spatial integral equations / Russ. J. Nondestruct. Testing. 2009. Vol. 45. N 5. P. 337 – 346. DOI: 10.1134/S1061830909050076

15. Yang L., Cui W., Gao S. Magnetic flux leakage field within the detector unit optimization based on Comsol / Testing and Measurement: Techniques and Applications. 2015. P. 271 – 275. DOI: 10.1201/b18470-63

16. Reutov Yu. Ya., Gobov Yu. L., Loskutov V. E. Feasibilities of using the ELCUT software for calculations in Nondestructive Testing / Russ. J. Nondestruct. Testing. 2002. Vol. 38. N 6. P. 425 – 430. DOI: 10.1023/A:1022174825844

17. Chernykh I. V. ELCUT package: simulation of induction heating devices. https://www.elcut.ru/publications/chernih3.pdf (accessed 26.11.2020).

18. Dyakin V. V., Kudryashova O. V., Raevskii V. Ya. On the use of multipurpose software packages for solving problems of magnetostatics / Russ. J. Nondestruct. Testing. 2018. Vol. 54. N 11. P. 765 – 775. DOI: 10.1134/S1061830918110037

19. Shur M. L., Novoslugina A. P., Smorodinskii Ya. G. On the inverse problem of magnetostatics / Russ. J. Nondestruct. Testing. 2013. Vol. 49. N 8. P. 465 – 473. DOI: 10.1134/ S106183091308007X

20. Novoslugina A. P., Smorodinskii Ya. G. A calculation method for evaluating defect parameters in steel / Russ. J. Nondestruct. Testing. 2017. Vol. 53. N 11. P. 765 – 771. DOI: 10.1134/S1061830917110067


Review

For citations:


Novoslugina A.P., Smorodinsky Ya.G. Analysis of the topography of magnetic flux leakage in ferromagnetic products. Industrial laboratory. Diagnostics of materials. 2021;87(2):33-37. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-2-33-37

Views: 524


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)