

Development of the methods for determination of the active components in acidic and alkaline detergents
https://doi.org/10.26896/1028-6861-2021-87-2-72-78
Abstract
The goal of the study is to develop methods for determination of the active components in acidic and alkaline detergents of complex composition. The objects of analysis are acidic (KATELON 202 – 208) and alkaline (KATELON 111 – 115) detergents of complex composition, which, in addition to easily detectable components (KOH and/or NaOH, HNO3, and H3PO4), contain weak organic acids (lactic, glycolic, acetic), including polybasic acids — aminotrimethylenephosphonic and diethylenetriaminepenta (methylenephosphonic) acids or salts — tetrasodium salt of glutamic acid N,N-diacetate, trisodium salt of methylglycine diacetic acid. An acid-base potentiometric titration was carried out for each of the listed objects and calculation formulas were derived to determine the concentration of the active substances (except for KATELON 115) in terms of nitric or phosphoric acid for acidic detergents or sodium or potassium hydroxide for alkaline detergents, respectively. A specific titration procedure (with indication of the sample weight, the pH value at the end of titration and corresponding calculation formula) is given in the application data sheet for each detergent along with the metrological characteristics of the methods.
About the Authors
Yu. V. MatveichukBelarus
23A/309 Uruchskaya st., Minsk, 220125, Belarus
Yu. V. Shabeka
Belarus
23A/309 Uruchskaya st., Minsk, 220125, Belarus
D. V. Stanishevskii
Belarus
23A/309 Uruchskaya st., Minsk, 220125, Belarus
References
1. Kropotov V. A. Comparison of two approaches to processing titration curves of dibasic acid / J. Anal. Chem. 2002. Vol. 57. N 3. P. 221 – 225. DOI: 10.1023/A:1014440231209
2. Kropotov V. A. Influence of measurement errors on the parameters of the potentiometric titration curve of a mixture of two weak monobasic acids / Uch. Zap. TNU. 2010. Vol. 23. N 2. P. 232 – 237 [in Russian].
3. Arbatsky A. P. Acid-base properties of electrolyte solutions and criteria for their analysis: author. dis. ... doctor of chemical sciences — Dnepropetrovsk, 1991. — 32 p. [in Russian].
4. Gubarev Y. A., Lebedeva N. Sh., Golubev S. N. Determination of stability of molecular complexes of zinc (II) mesotetraphenylporphyrin with heterocyclic N-oxide and pyridine by different methods / Macroheterocycles. 2013. Vol. 6. N 1. P. 106 – 110. DOI: 10.6060/mhc120986g
5. Tanganov B. B., Alekseeva I. A. Acid-base equilibria in solutions of polybasic acids (model and experiment): I. Thermodynamic dissociation constants of dibasic acids / Rus. J. Gen. Chem. 2005. Vol. 75. N 11. P. 1693 – 1696. DOI: 10.1007/ s11176-005-0493-6
6. Tanganov B. B. Acid-base equilibria in solutions of polyacids bases (model and experiment): II. Thermodynamic dissociation constants of tribasic acids / Rus. J. Gen. Chem. 2007. Vol. 77. N 8. P. 1319 – 1323. DOI: 10.1134/S1070363207080026
7. Tanganov B. B., Alekseeva I. A. Acid-base equilibria in polybase solutions (model and experiment). Thermodynamic constants for the dissociation of protonated bases in a DMF medium / Khim. Khim. Tekhnol. 2007. Vol. 50. N 5. P. 20 – 23 [in Russian].
8. Bragin A. I. Potentiometric titration of dilute solutions of dibasic organic acids in the presence of strong electrolytes. Author’s Abstract of Candidate’s Thesis. — Krasnodar, 2013. — 25 p. [in Russian].
9. Maslarska V., Tencheva J., Budevsky O. A new approach to data treatment in acid-base potentiometric titration. II. Determination of polyprotic acids and bases / Chem. Anal. (Warsaw). 2005. Vol. 50. P. 815 – 823.
10. Henriques B. G., Pereira de Sousa V., Volpato N. M., Garcia S. Development and validation of an analytical methodology for determination of glycolic acid acid in raw material and formulations dermocosmetic / Rev. Bras. Cienc. Farm. 2007. Vol. 43. N 1. P. 39 – 45. DOI: 10.1590/S1516- 93322007000100005
11. Brima E. I., Abbas A. M. Determination of citric acid in soft drinks, juice drinks and energy drinks using titration / Int. J. Chem. Stud. 2014. Vol. 1. N 6. P. 30 – 34.
12. Dyatlova N. M., Temkina V. Ya., Popov K. I. Complexones and complexonates of metals. — Moscow: Khimiya, 1988. — 544 p. [in Russian].
13. Lurie Yu. Yu. Analytical Chemistry Handbook. — Moscow: Khimiya, 1979. — 480 p. [in Russian].
14. Kabachnik M. I. Oxyethylidene diphosphonic acid: article / Chemical encyclopedic dictionary. — Moscow: Sovetskaya йntsiklopediya, 1983. P. 403. [in Russian].
15. Le Bideau D., Mandin Ph., Benbouzid M., et al. Review of necessary thermophysical properties and their sensivities with temperature and electrolyte mass fractions for alkaline water electrolysis multiphysics modelling / Int. J. Hydrogen Energy. 2019. Vol. 44. N 10. P. 4553 – 4569. DOI: 10.1016/j.ijhydene. 2018.12.222
16. State Standard GOST R ISO 5725-6–2002. Accuracy (trueness and precision) of methods and results of measurements. Part 6. Use of precision values in practice. — Moscow: Standsrtinform, 2003 [in Russian].
17. Golovanov V. I. On the theory of carbonate error in pH-metric titration of weak acids / Vestn. YuUrGU. Ser. Khim. 2014. Vol. 6. N 2. P. 21 – 29 [in Russian].
18. Michałowski T., Asuero A. G. New Approaches in Modeling Carbonate Alkalinity and Total Alkalinity / Crit. Rev. Anal. Chem. 2012. Vol. 42. N 3. P. 220 – 244. DOI: 10.1080/10408347.2012.660067
Review
For citations:
Matveichuk Yu.V., Shabeka Yu.V., Stanishevskii D.V. Development of the methods for determination of the active components in acidic and alkaline detergents. Industrial laboratory. Diagnostics of materials. 2021;87(2):72-78. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-2-72-78