Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

The use of photogenerated iodine for the determination of isoniazid in solid dosage formulation

https://doi.org/10.26896/1028-6861-2021-87-3-5-10

Abstract

A shot cut method for the determination of isoniazid in a solid dosage formulation (DF) has been developed. The method is based on isoniazid titration with a solution of photogenerated iodine obtained as a result of irradiation of an auxiliary solution containing potassium iodide, a mixture of sensitizers (sodium eosinate, fluorescein, auramine taken in a molar ratio of 1:1:1) and phosphate buffer solution (pH 7.5). Since the titrant content in the cell was controlled using the voltammetric method (amperometric titration with two polarized electrodes), the interaction of a physiologically active compound with the latter was accompanied by a decrease in the amount of titrant in the cell and, hence, in the current in amperometric circuit. Stabilization of the current in the circuit of the amperometric setup indicated the completeness of the reaction, and, therefore, provided estimation of the content of a physiologically active compound in the dosage formulation. Further irradiation of the solution and measurement of the generation time required to replenish the loss of titrant in the cell also made it possible to regulate the content of isoniazid in the preparation. The technique was tested on the samples of solid dosed formulations. It was shown that the components of the tablet mass (calcium stearate monohydrate, polysorbate, crospovidone and potato starch) do not affect the results of the determination of physiologically active compound provided that the analyzed form is obtained at room temperature. The determined content of isoniazid in a solid dosage formulation varies in the range of 286.0 – 296.0 mg and falls within the range recommended by the General Pharmacopoeia Monograph 1.4.2.0009.15 (285 – 315 mg), which indicates that the quality of the drug meets the GMP standards. The linear dependence of the analytical signal on the concentration of physiologically active compound is observed in the range of 161 – 1610 mg for the drug «Isoniazid. Tablets, 300 mg». The calculated detection limits and quantitative determination are 13.5 and 41.0 mg (both in terms of change in the current strength and in the time of titrant generation), respectively. The developed photochemical method for the determination of isoniazid in solid dosed formulation is easy to use, meets the requirements set out in the guidelines for validation of bioanalytical methods, and does not require expensive equipment. The method can be recommended for routine control of the DF quality indicators in any analytical laboratory.

About the Authors

E. V. Turusova
I. N. Ulyanov Chuvash State University
Russian Federation

Elena V. Turusova

15, Moskovsky prosp., Cheboksary, 428015



O. E. Nasakin
I. N. Ulyanov Chuvash State University
Russian Federation

Oleg E. Nasakin

15, Moskovsky prosp., Cheboksary, 428015



A. N. Lyshchikov
I. N. Ulyanov Chuvash State University
Russian Federation

Anatoliy N. Lyshchikov

15, Moskovsky prosp., Cheboksary, 428015



References

1. Santos L. G., Pires G. N., Azeredo Bittencourt L. R., et al. Chronobiology: relevance for tuberculosis / Tuberculosis (Edinb). 2012. Vol. 92. N 4. P. 293 – 300. DOI: 10.1016/j.tube.2012.03.006

2. Jhun B. W., Koh W. J. Treatment of Isoniazid-Resistant Pulmonary Tuberculosis / Tuberc. Respir. Dis. (Seoul). 2020. Vol. 83. N 1. P. 20 – 30. DOI: 10.4046/trd.2019.0065

3. Vilchèze C., Jacobs W. R. The isoniazid paradigm of killing, resistance, and persistence in mycobacterium tuberculosis / J. Mol. Biol. 2019. Vol. 431. N 18. P. 3450 – 3461. DOI: 10.1016/j.jmb.2019.02.016

4. Denholm J. T., McBryde E. S., Eisen D. P., et al. Adverse effects of isoniazid preventative therapy for latent tuberculosis infection: a prospective cohort study / Drug, Healthcare Patient Saf. 2014. Vol. 6. P. 145 – 149. DOI: 10.2147/DHPS.S68837

5. Pettit A. C., Bethel J., Hirsch-Moverman Y., et al. Female sex and discontinuation of isoniazid due to adverse effects during the treatment of latent tuberculosis / J. Infect. 2013. Vol. 67. N 5. P. 424 – 432. DOI: 10.1016/j.jinf.2013.07.015

6. Akbar K., Rumina H., Ying Z., et al. Increased expression of efflux pump genes in extensively drug-resistant isolates of Mycobacterium tuberculosis / Int. J. Mycobact. 2016. Vol. 5. P. S150 – S150. DOI: 10.1016/j.ijmyco.2016.09.067

7. Hee K. H., Seo J. J., Lee L. S. Development and validation of liquid chromatography tandem mass spectrometry method for simultaneous quantification of first line tuberculosis drugs and metabolites in human plasma and its application in clinical study / J. Pharmaceut. Biomed. Anal. 2015. Vol. 102. P. 253 – 260. DOI: 10.1016/j.jpba.2014.09.019

8. Denholm J. T., McBryde E. S., Eisen D. P., et al. Adverse effects of isoniazid preventative therapy for latent tuberculosis infection: a prospective cohort study / Drug, Healthcare Patient Saf. 2014. Vol. 6. P. 145 – 149. DOI: 10.2147/DHPS.S68837

9. Fachi M. M., Vilhena R. O., Boger B., et al. LC-QToF-MS method for quantification of ethambutol, isoniazid, pyrazinamide and rifampicin in human plasma and its application / Biomed. Chromatogr. 2020. Vol. 34. N 5. Art. E4812. DOI: 10.1002/bmc.4812

10. Sundell J., Bienvenu E., Birgersson S., et al. Simultaneous quantification of four first line antitubercular drugs and metabolites in human plasma by hydrophilic interaction chromatography and tandem mass spectrometry / J. Chromatogr. B. 2019. Vol. 1105. P. 129 – 135. DOI: 10.1016/j.jchromb.2018.10.027

11. Lee K., Choi Y., Kim K., et al. Quantification of unknown nanoscale biomolecules using the average-weight-difference method / Appl. Sci. 2019. Vol. 9. N 1. Art. 130. DOI: 10.3390/app9010130

12. Laique T., Firdous A., Ashraf A., et al. Development and Validation of HPLC method for finding Isoniazid plasma levels in TB Patients with its Quantification in FDC Therapy / Pak. J. Med. Health Sci. 2019. Vol. 13. N 3. P. 674 – 678. DOI: 10.7324/JAPS.2018.8715

13. Gao S., Wang Z., Xie X., et al. Rapid and sensitive method for simultaneous determination of first-line anti-tuberculosis drugs in human plasma by HPLC-MS/MS: Application to therapeutic drug monitoring / Tuberculosis. 2018. Vol. 109. P. 28 – 34. DOI: 10.1016/j.tube.2017.11.012

14. Mishra P., Albiol-Chiva J., Bose D., et al. / Optimization and validation of a chromatographic method for the quantification of isoniazid in urine of tuberculosis patients according to the european medicines agency guideline / Antibiotics. 2018. Vol. 7. N 4. Art. 107. DOI: 10.3390/antibiotics7040107

15. Bibire N., Olariu R. I., Agoroaei L., et al. Reversed-phase high performance liquid chromatographic analysis of three first line anti-tuberculosis drugs / Revista de Chim. 2018. Vol. 69. N 12. P. 3590 – 3592. DOI: 10.37358/RC.18.12.6799

16. Luyen L. T., Hung T. M., Huyen L. T., et al. Simultaneous determination of pyrazinamide, rifampicin, ethambutol, isoniazid and Acetyl Isoniazid in human plasma by LC-MS/MS method / J. Appl. Pharmaceut. Sci. 2018. Vol. 8. N 9. P. 61 – 73. DOI: 10.7324/JAPS.2018.8910

17. Hakkimane S. S., Guru B. R. Nano formulation analysis: Analytical method development of isoniazid and simultaneous estimation of antitubercular drugs isoniazid and rifampicin by reverse phase high pressure liquid chromatography / Asian J. Pharmaceut. Clinic. Res. 2017. Vol. 10. N 5. P. 330 – 335. DOI: 10.22159/ajpcr.2017.v10i5.17582

18. El Bouazzi O., Badrane N., Zalagh F., et al. Optimization and validation of rapid and simple method for determination of isoniazid and pyrazinamide in plasma by HPLC-UV / J. Chem. Pharma. Res. 2016. Vol. 8. N 3. P. 165 – 169.

19. Wollinger W., Da Silva R. A., Da Nóbrega A. B., et al. Assessing drug-excipient interactions in the formulation of isoniazid tablets / J. Braz. Chem. Soc. 2016. Vol. 27. N 5. P. 826 – 833. DOI: 10.5935/0103-5053.20150334

20. Prahl J. B., Lundqvist M., Bahl J. M. C., et al. Simultaneous quantification of isoniazid, rifampicin, ethambutol and pyrazinamide by liquid chromatography/tandem mass spectrometry / APMIS. 2016. Vol. 124. N 11. P. 1004 – 1015. DOI: 10.1111/apm.12590

21. Anubala S., Sekar R., Narayana P. S., Nagaiah K. A validated high-performance thin-layer chromatographic method for the determination of bioenhanced first-line antituberculosis drugs in pharmaceutical formulation / J. Planar. Chromatogr. Mod. TLC. 2015. Vol. 28. N 1. P. 67 – 73. DOI: 10.1556/JPC.28.2015.1.11

22. Basavaiah K., Swamy N., Chandrashekar U. Simple and sensitive spectrophotometric assay of isoniazid in pharmaceuticals using permanganate, methyl orange and indigo carmine as reagent / Acta Poloniae Pharmaceutica. 2017. Vol. 74. N 5. P. 1353 – 1364.

23. Chellini P. R., Mendes T. O., Franco P. H. C., et al. Simultaneous determination of rifampicin, isoniazid, pyrazinamide and ethambutol in 4-FDC tablet by Raman spectroscopy associated to chemometric approach / Vib. Spectrosc. 2017. Vol. 90. P. 14 – 20. DOI: 10.1016/j.vibspec.2017.03.001

24. Duarte L. M., Amorim T. L., Chellini P. R., et al. Sub-minute determination of rifampicin and isoniazid in fixed dose combination tablets by capillary zone electrophoresis with ultraviolet absorption detection / J. Separat. Sci. 2018. Vol. 41. N 24. P. 4533 – 4543. DOI: 10.1002/jssc.201800673

25. Kokulnathan T., SuvinaV., Wang T. J., Balakrishna R. G. Synergistic design of a tin phosphate-entrapped graphene flake nanocomposite as an efficient catalyst for electrochemical determination of the antituberculosis drug isoniazid in biological samples / Inorg. Chem. Front. 2019. Vol. 6. N 7. P. 1831 – 1841. DOI: 10.1039/C9QI00254E

26. Oliveira P. R., Kalinke C., Mangrich A. S., et al. Copper hexacyanoferrate nanoparticles supported on biochar for amperometric determination of isoniazid / Electrochim. Acta. 2018. Vol. 285. P. 373 – 380. DOI: 10.1016/j.electacta.2018.08.004

27. Chokkareddy R., Bhajanthri N. K., Redhi G. G. An enzyme-induced novel biosensor for the sensitive electrochemical determination of isoniazid / Biosensors. 2017. Vol. 7. N 21. DOI: 10.3390/bios7020021

28. Nellaiappan S., Kumar A. S. Electrocatalytic oxidation and flow injection analysis of isoniazid drug using a gold nanoparticles decorated carbon nanofibers-chitosan modified carbon screen printed electrode in neutral pH / J. Elect. Chem. 2017. Vol. 801. P. 171 – 178. DOI: 10.1016/j.jelechem.2017.07.049

29. Balamurugan T. S. T., Manibalan K., Chen S. M., et al. High sensitive electrochemical quantification of isoniazid in biofluids using copper particles decorated graphene oxide nano composite / Int. J. Electrochem. Sci. 2017. Vol. 12. N 10. P. 9150 – 9160. DOI: 10.20964/2017.10.44

30. RF Pat. 122490. Photochemical analyzer / Turusova E. V., Lyschikov A. N., Nasakin O. E. Publ November 27, 2012.


Review

For citations:


Turusova E.V., Nasakin O.E., Lyshchikov A.N. The use of photogenerated iodine for the determination of isoniazid in solid dosage formulation. Industrial laboratory. Diagnostics of materials. 2021;87(3):5-10. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-3-5-10

Views: 402


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)