

Determination of the effective stiffness of a unidirectional layer by the finite element method and approximate formulas
https://doi.org/10.26896/1028-6861-2021-87-3-40-50
Abstract
Layered composites formed by unidirectional layers are widely used in aviation in the most loaded areas of the aircraft. Data on the elastic properties of the layers are required for the strength and stiffness calculation of structural elements made of such materials. There are two possible approaches to address the problem. The first approach is based on solving the problem of micromechanics using methods of the theory of elasticity. The second approach consists in developing a simplified model of a unidirectional layer. Analysis of the model can provide for fairly simple formulas for determination of the effective stiffness of a unidirectional layer. A comparative analysis of the results obtained in both approaches revealed the limits of applicability of approximate formulas derived for evaluating the effective characteristics of the different types of composites depending on the volume content of fibers. The effective elastic characteristics of unidirectional composites are determined by the finite element method in the framework of the linear theory of elasticity. The boundary value problem is solved for a characteristic representative element selected in accordance with the physical and geometric parameters of the medium of an ordered structure. A set of algorithm-programs has been developed under ANSYS environment which automates calculations of the elastic characteristics of materials depending on the volume content of fibers at different ratios of the elastic properties of fibers and binder, and on the parameters of the curvature of the fiber cross-sectional profile. The results obtained by the numerical method are compared with the data obtained experimentally and by approximate formulas.
About the Authors
I. P. OleginRussian Federation
Igor P. Olegin
20, Karla Marksa prosp., Novosibirsk, 630073T. V. Burnysheva
Russian Federation
Tatyana V. Burnysheva
20, Karla Marksa prosp., Novosibirsk, 630073N. A. Laperdina
Russian Federation
Natalya A. Laperdina
21, Chaplygina ul., Novosibirsk, 630051References
1. Bardzokas D. I., Filshtinsky L. A., Filshtinsky M. L. Actual problems of connected physical fields in deformable bodies. Vol. 1. Mathematical apparatus of physical and engineering Sciences. — Izhevsk: NITS «Regulyarnaya i khaoticheskaya dinamika», 2010. — 864 p. [in Russian].
2. Vanin G. A. Micromechanics of composite materials. — Kiev: Naukova dumka, 1985. — 302 p. [in Russian].
3. Grigolyuk E. I., Filshtinsky L. A. Periodic piecewise homogeneous elastic structures. — Moscow: Nauka, 1992. — 288 p. [in Russian].
4. Xia Z., Zhang Y., Ellyin F. A unified periodical boundary conditions for representative volume elements of composites and applications / Int. J. Solids Struct. 2003. Vol. 40. N 8. P. 1907 – 1921.
5. Dimitrienko Yu. I., Yurin Yu. V. Finite element modeling of damage and durability of composite structural elements with delamination type defects / Matem. Modelir. Chisl. Met. 2017. N 3(15). P. 49 – 70. DOI: 10.18698/2309-3684-2017-3-4970 [in Russian].
6. Dimitrienko Yu. I., Dragoljub A. N., Gubareva E. A. Optimization of multicomponent dispersion-reinforced composites on the basis of spline-approximation / Nauka Obraz. (MGTU im. N. É. Baumana). 2015. N 2. P. 216 – 233. DOI: 10.7463/0215.0757079 [in Russian].
7. Hashin Z., Rosen B. W. The elastic moduli of fiber-reinforced materials / J. Appl. Mech. 1964. Vol. 3. P. 1 – 9.
8. Hill R. Theory of mechanical properties of fibre-strengthened materials: I. Elastic behavior / J. Mech. Phys. Solids. 1964. Vol. 12. P. 199 – 212.
9. Whitney J. M., Riley M. B. Elastic properties of fiber reinforced composite materials / AIAA J. 1966. Vol. 4. Issue 9. P. 1537 – 1542.
10. Hermans J. J. The elastic properties of fiber reinforced materials when the fiber are aligned / Proc. Kon. Ned. Akad. B 70. 1967. Issue 1. P. 1 – 9.
11. Malmejster A. K., Tamuzh V. P., Teters G. A. Resistance of polymer and composite materials. — Riga: Zinatne, 1980. — 572 p. [in Russian].
12. Bolotin V. V. Plane problem of the theory of elasticity for parts made of reinforced materials / Strength calculations. Issue 12. — Moscow.: Mashinostroenie, 1966. P. 3 – 31 [in Russian].
13. Composite materials of fibrous structure / I. N. Francevich, D. M. Karpinos, Eds. — Kiev: Naukova dumka, 1970. — 403 p. [in Russian].
14. Kristensen R. Introduction to the mechanics of composites. — Moscow: Mir, 1982. — 334 p. [in Russian].
15. Basov K. A. ANSYS: user’s guide. — Moscow: DMK Press, 2005. — 640 p. [in Russian].
16. Basov K. A. Graphical interface of the ANSYS complex. — Saratov: Profobrazovaniye, 2017. — 239 p. [in Russian].
17. Olegin I. P., Rastorguev S. G. Determination of effective characteristics in perforated plates taking into account the three-dimensional stress state / Nauch. Vestn. Novosibirsk. Gos. Tekhn. Univ. 2012. N 4. P. 91 – 98 [in Russian].
18. Olegin I. P., Kovalenko N. A. Determination of effective stiffness characteristics of unidirectional composites containing fibers with weak ellipticity / Sb. Nauch. Tr. Sworld. 2014. Vol. 8. Issue 1. P. 91 – 96 [in Russian].
19. Olegin I. P., Nigirich Y. B. Definition of Effective Mechanical Charecteristics in Plates with System of Holes / Proceeding of the Third International Forum on Strategic Technology (IFOST 2008 June 23 – 29). Novosibirsk – Tomsk. Russia. 2008. P. 77 – 79.
20. Olegin I. P., Rastorguev S. G. Determination of effective characteristics of periodic structure plates by the finite element method / Proc. of the All-Russian Scientific and Technical Conference «Science. Industry. Defense». — Novosibirsk: NGTU, 2009. P. 298 – 303 [in Russian].
21. Olegin I. P., Farmagey A. V., Kovalenko N. A. Numerical analysis of mechanical properties of composite materials of a three-period structure / Proc. of the All-Russian Scientific and Technical Conference «Science. Industry. Defense». — Novosibirsk: NGTU, 2009. P. 600 – 604 [in Russian].
22. Levin V. E., Laperdina N. A., Olegin I. P. Numerical approach in determining the elastic properties of unidirectionally reinforced composites / Nauch.-Tekhn. Vestn. Povolzh’ya. 2019. N 11. P. 141 – 145 [in Russian].
23. Olegin I. P., Rastorguev S. G. Numerical method for determining the effective characteristics of perforated cylindrical shells / Materials of the XVIII International Scientific and Technical Conference «Applied Problems of Mathematics and Mechanics». — Sevastopol: Izd. SevNTU, 2010. P. 37 – 40 [in Russian].
24. Crawford J. Guidelines for good Analysis: A step-by-step process for obtaining meaningful results / ANSYS Solutions. Fall 2003. P. 69 – 74.
25. Composite materials: reference / D. M. Karpinos, ed. — Kiev: Naukova dumka, 1985. — 592 p. [in Russian].
26. Brautman L., Krok R. Composite material / Vol. 2. Mechanics of composite materials. — Moscow: Mir. 1978. — 568 p. [Russian translation].
27. Maksimenko V. N., Olegin I. P., Pustovoy N. V. Methods for calculating the strength and stiffness of composite structural elements. — Novosibirsk: NGTU, 2015. — 423 p. [in Russian].
28. Sukhobokova G. P. Calculation of the stiffness and strength characteristics of a unidirectional layer and multi-layer materials with cross-reinforcement / Collection «Design, calculation and testing of structures made of composite materials». TSAGI. 1973. Issue I. P. 5 – 25 [in Russian].
29. Harris B. Engineering composite materials. — London: The Institute of Materials, 1999. — 194 p.
30. Barkhan A., Khatys R. Experimental verification of some elastic properties of unidirectional composites / Mekh. Kompozits. Mater. 2008. Vol. 44. N 2. P. 195 – 206 [in Russian].
31. Jones R. M. Mechanics of composite materials. 2nd ed. — Philadelphia: Taylor & Francis, 1999. — 519 p.
32. Chen C. H., Cheng S. A. Mechanical properties of anisotropic fiber-reinforced / J. Appl. Mech. 1970. Vol. 37(1). P. 186 – 189.
Review
For citations:
Olegin I.P., Burnysheva T.V., Laperdina N.A. Determination of the effective stiffness of a unidirectional layer by the finite element method and approximate formulas. Industrial laboratory. Diagnostics of materials. 2021;87(3):40-50. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-3-40-50