

The impact of flow-accelerated corrosion on the crack developing in welded joints of NPP equipment and pipelines
https://doi.org/10.26896/1028-6861-2021-87-3-58-63
Abstract
About the Author
D. A. Kuz’minRussian Federation
Dmitry A. Kuz’min
25, Ferghanskaya ul., Moscow, 109507References
1. Dejoux L., Trevin S., Tigeras A., Alos-Ramos O., Lemettre P.-Y. Flamanville 3 EPR: FAC-Free by Design / Proc. FAC-2013. Avignon, France, 21 – 24 May 2013.
2. NSAC-202L-R2. Recommendations for an effective flow-acceleration corrosion program. EPRI, Palo Alto, CA, April 1999.
3. Tomarov G. V., Shipkov A. A., Komissarova T. N. Flow-accelerated corrosion wear of power-generating equipment: investigations, prediction, and prevention: Part 2. Prediction and prevention of general and local flow-accelerated corrosion / Teploénergetika. 2018. N 8. P. 17 – 28 [in Russian].
4. Getman A. F. Resource of operation of vessels and pipelines of NPP. — Moscow: Énergoatomizdat, 2000. — 427 p. [in Russian].
5. Danilov A. V., Kamyshev A. V., et al. Apply the acoustoelastic method to determine residual stresses in welded joints / V Mire Nerazr. Kontrolya. 2020. Vol. 23. N 3. P. 10 – 17 [in Russian].
6. Kuzmin D. A., Kuzmichevsky A. Yu., Vertashenok M. V. Investigation of the probability of existence of defects with a size exceeding the allowed value / Stroit. Mekh. Inzh. Konstr. Sooruzh. 2020. Vol. 16. N 5. P. 414 – 423. DOI: 10.22363/1815-5235-2020-16-5-414-423 [in Russian].
7. Guidelines for calculating the strength of equipment and pipelines of RBMK, VVER and EGP reactor installations at the operational stage, including operation beyond the design life (RD EO 1.1.2.05.0330–2012). — Moscow: Rosénergoatom, 2012. — 174 p. [in Russian].
8. Makhutov N. A., Gadenin M. M. Structure of the main calculations for determination of the initial and remaining safe service / Prob. Bezopasn. Chrezvych. Sit. 2018. N 2. P. 21 – 33 [in Russian].
9. Makhutov N. A., Reznikov D. O., et al. Methodical features analysis of damage accumulation and achievement of the ultimate state of objects under combined impacts of multiparameter force factors and environment / Bezopasn. Tekhnosf. 2015. N 4. P. 24 – 31 [in Russian].
10. Makhutov N. A., Gadenin M. M. Comprehensive assessment of the strength, life, survivability and safety of machines under difficult loading conditions / Probl. Mashinostr. Nadezhn. Mashin. 2020. N 4. P. 24 – 34. DOI: 10.31857/S0235711920040094 [in Russian].
11. Antonov A. V., Ostreikovsky V. A. Resource and service life of equipment for nuclear power units (on the example of Smolensk NPP power units). — Moscow: Innovatsionnoe mashinostroenie, 2017. — 535 p. [in Russian].
12. Kuzmin D. A., Baranenko V. I. Influence of deposits on the nature of corrosion processes and ultrasonic control of pipeline wall thickness / Tyazh. Mashinostr. 2020. N 4. P. 16 – 21 [in Russian].
13. Tomarov G. V., Shipkov A. A. Application of software tools for predicting the corrosion-erosion rate to ensure integrity of equipment and piping of power units at nuclear power stations / Teploénergetika. 2020. N 8. P. 101 – 112 [in Russian].
14. Poulson B. Predicting and preventing flow accelerated corrosion in nuclear power plant / Int. J. Nuclear Energy. 2014. Article ID 423295. P. 23.
15. Arkadov G. V., Getman A. F., Rodionov A. N. Reliability of NPP equipment and pipelines and optimization of their life cycle (probabilistic methods). — Moscow: Énergoatomizdat, 2010. — 424 p. [in Russian].
Review
For citations:
Kuz’min D.A. The impact of flow-accelerated corrosion on the crack developing in welded joints of NPP equipment and pipelines. Industrial laboratory. Diagnostics of materials. 2021;87(3):58-63. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-3-58-63