Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Using of mathematical methods in the study of temperature-time conditions of the arc surfacing upon manufacturing of steel-aluminum compositions

https://doi.org/10.26896/1028-6861-2021-87-3-64-75

Abstract

A mathematical model for studying temperature-time conditions of arc surfacing upon manufacturing of steel-aluminum compositions has been developed and verified. During simulation, the dependences of the thermophysical properties of the materials under study (thermal conductivity and heat capacity of a unit mass of the substance at constant pressure and volume) on the heating temperature were added to the database of the «SVARKA» software to solve the thermal problem. When simulating the arc surfacing, the geometric model of the object was set in the form of a single body, which, e.g., in case of formation of functional coatings based on non-ferrous alloys on steel substrates, can consist of various materials. The parameters of the heat loads of the heating source are: the advance speed, power, distribution along and across the weld, as well as the presence and grade of the filler material. The calculation of heat propagation upon argon-arc surfacing with a non-consumable electrode was carried out according to the scheme with a normal-circular heat source located on the surface of a flat layer with the limiting effect of the bottom plane of the sheet. The considered calculation scheme includes all the main features of the argon-arc surfacing process, i.e., introduction of the heat of the welding arc into a massive body from the surface; small pressure of the welding arc; slight immersion of the active arc spot in the liquid metal. It is shown that allowance for the thermophysical properties of the intermetallic layer of the Fe – Al system located in the diffusion zone, provided determination of the heating temperature with the uncertainty of no more than 8 % not only at the steel-aluminum interface, but also at any point of the samples both in the transitional bimetallic steel-aluminum elements joined with aluminum or steel structures, and in functional aluminum coatings formed by surfacing, including those made of composite materials.

About the Authors

R. S. Mikheev
N. É. Bauman Moscow State Technical University
Russian Federation

Roman S. Mikheev

5, 2-ya Baumanskaya ul., Moscow, 105005


I. E. Kalashnikov
A. A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Russian Federation

Igor E. Kalashnikov

49, Leninskii prosp., Moscow, 119334


References

1. Ryabov V. R. Application of bimetallic and reinforced steel-aluminum compounds. — Moscow: Metallurgiya, 1975. — 283 p. [in Russian].

2. Gurevich L. M., Pronichev D. V., Trudov A. V., Trykov Yu. P., Trunov M. D. Investigation of the influence of explosion welding and heat treatment modes on the structure and properties of bimetal AD1 – ST3 steel / Izv. Volgograd. Tekhn. Univ. 2014. N 9. P. 17 – 21 [in Russian].

3. Kuz’min V. I., Lysak V. I., Kuz’min S. V., Kharlamov V. O. Investigation of the effect of heat treatment on the structure and properties of a steel-aluminum composite with a diffusion barrier / Fiz. Met. Metalloved. 2015. N 11. P. 1153 – 1159 [in Russian].

4. Silvayeh Z., Domitner J., Sommitsch C., Hartmann M., Karner W., Götzinger B. Mechanical properties and fracture modes of thin butt-joined aluminum-steel blanks for automotive applications / Journal of Manufacturing Processes. 2020. Vol. 59. P. 456 – 467. DOI: 10.1016/j.jmapro.2020.09.050

5. Guan Q., Long J., Yu P., Jiang S., Huang W., Zhou J. Effect of steel to aluminum laser welding parameters on mechanical properties of weld beads / Optics & Laser Technology. 2019. Vol. 111. P. 387 – 394. DOI: 10.1016/j.optlastec.2018.09.060

6. Ryabov V. R. Aluminizing steel. — Moscow: Metallurgiya, 1973. — 240 p. [in Russian].

7. Rong J., Kang Z., Chen S., Yang D., Huang J., Yang J. Growth kinetics and thickness prediction of interfacial intermetallic compounds between solid steel and molten aluminum based on thermophysical simulation in a few seconds / Materials Characterization. 2017. Vol. 132. P. 413 – 421. DOI: 10.1016/j.matchar.2017.09.012

8. Das A., Shomeb M., Goecke S.-F., De A. Joining of aluminium alloy and galvanized steel using a controlled gas metal arc process / Journal of Manufacturing Processes. 2017. Vol. 27. P. 179 – 187. DOI: 10.1016/j.jmapro.2017.04.006

9. Sachin R., Sumesh A., Upas U. S. Study of mechanical properties and weldability of aluminium alloy and stainless steel by gas metal arc welding / Materials Today: Proceedings. 2020. Vol. 24. P. 1167 – 1173. DOI: 10.1016/j.matpr.2020.04.430

10. Mikheev R. S., Kalashnikov I. E., Bolotova L. K., Kolmakov A. G. Research of the intermetallics formation mechanism during the synthesis of functionally graded layered steel-aluminum compositions / IOP Conf. Series: Materials Science and Engineering. 2020. Vol. 848. N 012056. P. 1 – 7. DOI: 10.1088/1757-899X/848/1/012056

11. Oryshchenko A. S., Osokin E. P., Pavlova V. I., Zykov S. A. Bimetallic steel-aluminum compounds in shipbuilding hull structures / Avtom. Svarka. 2009. N 10. P. 43 – 47 [in Russian].

12. Szczepaniak A., Fan J., Kostka A., Raabe D. On the correlation between thermal cycle and formation of intermetallic phases at the interface of laser-welded aluminum-steel overlap joints / Advanced Engineering Materials. 2012. Vol. 14. N 7. P. 464 – 472. DOI: 10.1002/adem.201200075

13. Novák P., Knotek V., Voděrová M., Kubásek J., Šerák J., Michalcová A., Vojtěch D. Intermediary phases formation in Fe – Al – Si alloys during reactive sintering / Journal of Alloys and Compounds. 2010. Vol. 497. P. 90 – 94. DOI: 10.1016/j.jallcom.2010.03.028

14. Novák P., Knotek V., Šerák J., Michalcová A., Vojtěch D. Synthesis of Fe – Al – Si intermediary phases by reactive sintering / Powder Metallurgy. 2011. Vol. 54. N 2. P. 167 – 171. DOI: 10.1179/174329009X449314

15. Li Y., Hashimoto H., Sukedai E., Zhang Y., Zhang Z. Morphology and structure of various phases at the bonding interface of Al/steel formed by explosive welding / Journal of Electron Microscopy. 2000. Vol. 49. N 1. P. 5 – 16. DOI: 10.1093/oxfordjournals.jmicro.a023791

16. Mikheev R. S., Kobernik N. V., Kalashnikov I. E. Effect of the process of production of functional gradient layered steel-aluminum compositions on their structure and properties / Russian Metallurgy (Metally). 2020. Vol. 9. P. 1020 – 1026. DOI: 10.1134/S0036029520090104

17. Kurkin A. S., Makarov E. L. Software package «welding» — a tool for solving practical problems of welding production / Svarka Diagn. 2010. N 1. P. 16 – 24 [in Russian].

18. Kotovich A. V., Stankevich I. V. Solution of thermal conductivity problems by the finite element method. Methodological guidelines for solving problems in the course «Grid methods». — Moscow: Izd. MGTU im. N. É. Baumana, 2010. — 87 p. [in Russian].

19. Rozanov D. S. Modeling material properties for calculating hydrogen diffusion in welding / Inzh. Vestn. 2013. N 11. P. 75 – 82 [in Russian].

20. Zinov’ev V. E. Thermophysical properties of metals at high temperatures. — Moscow: Metallurgiya, 1989. — 384 p. [in Russian].

21. Chirkin V. S. Thermophysical properties of nuclear engineering materials. Guide. — Moscow: Atomizdat, 1968. — 484 p. [in Russian].

22. Berezovskii B. M., Stikhinin V. A. Calculation of parameters of the heat flow distribution of the surface welding arc / Svar. Proizv. 1980. N 2. P. 1 – 4 [in Russian].

23. Konovalov A. V. et al. Theory of welding processes: Textbook for universities. — Moscow: Izd. MGTU im. N. É. Baumana, 2007. — 752 p. [in Russian].

24. Rykalin N. N. Calculation of thermal processes during welding. — Moscow: MAShGIZ, 1951. — 296 p. [in Russian].

25. Cerjak H. Mathematical modelling of weld phenomena. — London: IOM Communications Ltd, 1998. — 697 p.

26. Reddy B. V., Deevi S. C. Thermophysical properties of FeAl (Fe – 40 at. % Al) / Intermetallics. 2000. Vol. 8. N 12. P. 1369 – 1376. DOI: 10.1016/S0966-9795(00)00084-4

27. Zienert T., Leineweber A., Fabrichnaya O. Heat capacity of Fe – Al intermetallics: FeAl, FeAl2, Fe2Al5 and Fe4Al13 / Journal of Alloys and Compounds. 2017. Vol. 725. P. 848 – 859. DOI: 10.1016/j.jallcom.2017.07.199


Review

For citations:


Mikheev R.S., Kalashnikov I.E. Using of mathematical methods in the study of temperature-time conditions of the arc surfacing upon manufacturing of steel-aluminum compositions. Industrial laboratory. Diagnostics of materials. 2021;87(3):64-75. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-3-64-75

Views: 374


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)