Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

X-ray fluorescence determination of small quantities of hafnium in nuclear pure zirconium materials

https://doi.org/10.26896/1028-6861-2021-87-4-5-12

Abstract

An important chemical impurity in the composition of zirconium materials for nuclear power engineering is hafnium, the content of which should not exceed 0.05 and 0.01% for domestic and foreign alloy grades, respectively. Hafnium, being an analogue of zirconium in its chemical properties, is difficult to be analyzed using classical methods of analytical chemistry. Among the physical methods, the X-ray fluorescence method is the most expressive, which is important in conditions of continuous production. The method of X-ray fluorescence for measuring the content of hafnium in zirconium-containing material has been tested on the example of potassium fluorozirconate, a precursor for obtaining alloys. With various combinations of crystal analyzers, detectors, and collimators of the wave-dispersive spectrometer, the ratios of the intensities of the analytical lines of Hf and Zr in the second order of reflection were refined, and the degree of decrease in the fluorescence intensity of those lines was determined. The X-ray fluorescence spectra of hafnium lines in potassium fluorozirconate at the content characteristic of nuclear-pure zirconium are studied. The possibility of recording the intensity of the Hf analytical lines and methods of eliminating the interference from the Zr lines in the second order of reflection are considered. The metrological characteristics are calculated for Hf analytical lines. It is shown that the smallest error and the lowest detection limit (0.001%) is provided when using the HfLβ1 line at certain settings of the wave-dispersive spectrometer, including the X-ray tube operation mode, a combination of a crystal analyzer, a detector and a collimator, as well as the amplitude discriminator settings. The method of accounting for the background is recommended. The proposed method of hafnium determination is applicable to the materials with a constant content of zirconium.

About the Authors

N. Ya. Varkentin
JSC Chepetsk Mechanical Plant
Russian Federation

Nikolai Ya. Varkentin

7 Belova ul., Glazov, 427622



E. G. Vinokurov
D. I. Mendeleyev University of Chemical Technology of Russia
Russian Federation

Evgenii G. Vinokurov

9 Miusskaya pl., Moscow, 125047



O. A. Karavaeva
JSC Chepetsk Mechanical Plant
Russian Federation

Ol’ga A. Karavaeva

7 Belova ul., Glazov, 427622



U. V. Bortnikova
JSC Chepetsk Mechanical Plant
Russian Federation

Ul’yana V. Bortnikova

7 Belova ul., Glazov, 427622



References

1. Zaimovskii A. S., Nikulina A. V., Reshetnikov N. G. Zirconium alloys in nuclear power. — Moscow: Énergoatomizdat, 1994. — 252 p. [in Russian].

2. Raparthi Shekhar, Arunachalam J., Radha Krishna G., et al. Determination of Elemental Composition of Zr-Nb Alloys by Glow Discharge Quadrupole Mass Spectrometry / At. Spectros. 2004. Vol. 25. N 4. P. 157 – 164. DOI: 10.1039/b300158j

3. Miura Tsutomu, Matsue Hideaki, Kuroivva Takayoshi. Instrumental neutron activation analysis of hafnium in zirconium metal using internal standartization / J. Radioanal. Nucl. Chem. 2009. Vol. 282. N 1. Article 49-52. DOI: 10.1007/s10967-009-0314-1

4. Dombrovskaya M. A., Lisienko D. G., Shafar O. Yu. Determination of hafnium in zirconium materials / Zavod. Lab. Diagn. Mater. 2019. Vol. 85. N 1. Part II. P. 56 – 59. DOI: 10.26896/1028-6861-2019-85-1-II-56-59 [in Russian].

5. Steffan I., Vujicic G. Analysis of Zirconium Alloys by Inductively Coupled Plasma Atomic Emission Spectrometry / J. Anal. At. Spectrom. 1994. Vol. 9. P. 785 – 789. DOI: 10.1039/ JA9940900785

6. Asakura H., Ikegami K., Murata M., Wakita H. Determination of components in refractories containing zirconia by X-ray fluorescence spectrometry / X-Ray Spectrom. 2000. Vol. 29. N 6. P. 418 – 425. DOI: 10.1002/1097-4539(200011/12)29:6<418: :AID-XRS445>3.0.CO; 2-P

7. Sarbajna C., Durani S., Rajagopalan V. Determination of Hafnium in Zircon by Wavelength Dispersive X-ray Fluorescence Spectrometry and Inductively coupled plasma spectrometry / The Indian Mineralogist. 2011. Vol. 45. N 1. P. 217 – 226.

8. Afzal M., Hanif J., Hanif I. Determination of zirconium and hafnium in solution by X-Ray fluorescence spectrometry / J. Radioanal. Nucl. Chem. 1990. Vol. 139. N 2. P. 203 – 214. DOI: 10.1007/BF02061804

9. State Standard GOST R 55410–2013. Refractories. Chemical analysis by X-ray fluorescence method. — Moscow: Standartinform, 2014. — 85 p. [in Russian].

10. Kalinkin I. P., Mosichev V. I., Saidov G. V. New handbook of chemist and technologist. Analytical chemistry. Part III. St. Petersburg: ANO NPO «Mir i Sem’ya», 2004. — 692 p. [in Russian].

11. Majid C. A., Hussain M. A., Saeed K. Quantitative microanalysis of Hafnium-Zirconium system by X-Ray fluorescence. — Rawalpindi: Pakistan Institute of Nuclear Science and Technology, 1986. — 19 p.

12. Agarwal R. M., Jha S. N. Determination of small concentration of hafnia in zirconia by selective excitation energy dispersive X-ray emission spectrometry / Fresenius J. Anal. Chem. 1994. Vol. 349. P. 434 – 437. DOI: 10.1007/BF00322928

13. Hasany S. M., Rashid F., Rashid A. Determination of traces of hafnium in zirconium oxide by wavelength dispersive X-Ray fluorescence spectrometry / J. Radioanal. Nucl. Chem. 1990. Vol. 142. N 2. P. 505 – 514. DOI: 10.1007/BF02040321

14. Lisienko D. G., Dombrovskaya M. A., Kubrina E. D. Synthesis of materials and evaluation of metrological characteristics of a standard sample of potassium fluorozirconate composition / Stand. Obraztsy. 2016. N 3. P. 47 – 60 [in Russian].

15. Blokhin M. A., Shveitser I. G. X-ray spectral reference book. — Moscow: Nauka, 1982. — 374 p. [in Russian].

16. Varkentin N. Ya., Karavaeva O. A. Influence of the instrumental parameters of an X-ray fluorescence wave-dispersive spectrometer on the metrological characteristics of measurements / Zavod. Lab. Diagn. Mater. 2019. Vol. 85. N 2. P. 65 – 72. DOI: 10.26896/1028-6861-2019-85-2-65-7 [in Russian].

17. Industry instruction OI 001.639–2016. Hafnium, zirconium. X-ray fluorescence technique for measuring mass fractions in products of potassium fluorozirconate production. — AO Chepetskii mekhanicheskii zavod, 2016. — 13 p. [in Russian].


Review

For citations:


Varkentin N.Ya., Vinokurov E.G., Karavaeva O.A., Bortnikova U.V. X-ray fluorescence determination of small quantities of hafnium in nuclear pure zirconium materials. Industrial laboratory. Diagnostics of materials. 2021;87(4):5-12. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-4-5-12

Views: 375


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)