Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Study of the hardening kinetics of a mineral binder using electrical and optical methods

https://doi.org/10.26896/1028-6861-2021-87-4-32-37

Abstract

Hardening of mineral binders (cement, gypsum, lime, clay) is accompanied by the dissolution of minerals from the binder surface, their chemical interaction with water (the reaction of hydration and hydrolysis), and the formation of a solution saturated with respect to new hydrates. The reactions of minerals with water continue for some time even after saturation when water molecules are adsorbed by the solid phase of the binder. An «intermediate» colloidal system thus formed is characterized by the viscosity or plasticity depending on the water content in it. At the final stage, the processes of recrystallization and coalescence of the particles in a colloidal solution occur resulting in solidification and hardening of the solution and increased strength of the formed stone. We present the results of studying the hardening kinetics of the aqueous solution of a mineral binder using electrical and optical methods with high time resolution. Semi-aqueous gypsum was selected as a mineral binder. During hardening, the resistance and the capacitance of the samples were measured along with the visualization of the spatial structure of the solution. The mineral composition of water significantly affected the character of hardening. Noticeable fluctuations of the electrical parameters were detected in the experiments with mineral water. Optical measurements showed that solidifying solution is similar in structure to dendrites and fractal dimensionality of the structure almost remains the same during growth. It is also shown that at the initial stage the hardening proceeds by the logistics law. The results obtained can be used and recommended for practical application for determination of the kinetic parameters of hardening and in diagnostics of the structure of materials based on mineral binders.

About the Authors

S. Sh. Rekhviashvili
Institute of Applied Mathematics and Automation, KBSC RAS
Russian Federation

Sergo Sh. Rekhviashvili

89a, ul. Shortanova, Nalchik, 360000



V. V. Narozhnov
Institute of Applied Mathematics and Automation, KBSC RAS
Russian Federation

Viktor V. Narozhnov

89a, ul. Shortanova, Nalchik, 360000



M. O. Mamchuev
Institute of Applied Mathematics and Automation, KBSC RAS
Russian Federation

Mukhtar O. Mamchuev

89a, ul. Shortanova, Nalchik, 360000



D. S. Gaev
Institute of Informatics and Regional Management Problems, KBSC RAS
Russian Federation

Dakhir S. Gaev

37a, ul. I. Armand, Nalchik, 360000



References

1. Adamtsevich A., Shilova L. The regulation of hardening kinetics of building composites based on cement binders / IOP Conf. Ser. Earth Environ. Sci. 2017. Vol. 90. P. 012152. DOI: 10.1088/ 1755-1315/90/1/012152

2. Miao M., Liu Q., Zhou J., Feng J. Effects of expansive agents on the early hydration kinetics of cementitious binders / Materials (Basel). 2019. Vol. 12. N 12. P. 1 – 11. DOI: 10.3390/ ma12121900

3. Pacheco J., De Brito J., Chastre C., Evangelista L. Experimental investigation on the variability of the main mechanical properties of concrete produced with coarse recycled concrete aggregates / Constr. Build. Mater. 2019. Vol. 201. P. 110 – 120. DOI: 10.1016/j.conbuildmat.2018.12.200

4. Lu Y., Shi G., Liu Y., Ding Z., Pan J., Qin D., Dong B., Shao H. Study on the effect of chloride ion on the early age hydration process of concrete by a non-contact monitoring method / Constr. Build. Mater. 2018. Vol. 172. P. 499 – 508. DOI: 10.1016/j.conbuildmat.2018.03.206

5. Zhang H., Yang Z., Su Y. Hydration kinetics of cement-quicklime system at different temperatures / Thermochim. Acta. 2019. Vol. 673. P. 1 – 11. DOI: 10.1016/j.tca.2019.01.002

6. Bernard O., Ulm F.-J., LeMarchand E. A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials / Cem. Concr. Res. 2003. Vol. 33. P. 1293 – 1309. DOI: 10.1016/S0008-8846(03)00039-5

7. Lin F., Meyer C. Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure / Cem. Concr. Res. 2009. Vol. 39. P. 255 – 265. DOI: 10.1016/j.cemconres.2009.01.014

8. Winnefeld F., Martin L., Müller C., Lothenbach B. Using gypsum to control hydration kinetics of CSA cements / Constr. Build. Mater. 2017. Vol. 155. P. 154 – 163. DOI: 10.1016/j.conbuildmat.2017.07.217

9. Thomas J., Biernacki J., Bullard J., Bishnoi S., Dolado J., Scherer G., Luttge A. Modeling and simulation of cement hydration kinetics and microstucture development / Cem. Concr. Res. 2011. Vol. 41. P. 1257 – 1278. DOI: 10.1016/j.cemconres.2010.10.004

10. Singh N., Middendorf B. Calcium sulphate hemihydrate hydration leading to gypsum crystallization / Progress in Crystal Growth and Characterization of Materials. 2007. Vol. 53. P. 57 – 77. DOI: 10.1016/j.pcrysgrow.2007.01.002

11. Clifton J. R. Some aspects of the setting and hardening of gypsum plaster / Nat. Bur. Stand (US). Tech. Note 755. 1973. P. 1 – 33.

12. Amathieu L., Boistelle R. Crystallization kinetics of gypsum from dense suspension of hemihydrate in water / J. of Crystal Growth. 1988. Vol. 88. P. 183 – 192. DOI: 10.1016/0022-0248(88)90275-8

13. Melikhov I. V., Rudin V. N., Vorobeva L. I. Non-diffusive topochemical transformation of calcium sulphate hemihydrate into the dihydrate / Mendeleev Commun. 1991. Vol. 1. N 1. P. 33 – 34. DOI: 10.1070/MC1991v001n01ABEH000019

14. Hand R. J. The kinetics of hydration of calcium sulphate hemihydrate: A critical comparison of the models in the literature / Cement and Concrete Research. 1994. Vol. 24. N 5. P. 885 – 895. DOI: 10.1016/0008-8846(94)90008-6

15. Lewry A., Wllliamson J. The setting of gypsum plaster. Part I: The hydration of calcium sulphate hemihydrate / J. of Materials Science. 1994. Vol. 29. P. 5279 – 5284. DOI: 10.1007/BF01171536

16. Lewry A., Wllliamson J. The setting of gypsum plaster. Part II: The development of microstructure and strength / J. of Materials Science. 1994. Vol. 29. P. 5524 – 5528. DOI: 10.1007/BF00349943

17. Kontrec J., Kralj D., Ljerka Brecevic L. Transformation of anhydrous calcium sulphate into calcium sulphate dihydrate in aqueous solutions / J. of Crystal Growth. 2002. Vol. 240. P. 203 – 211. DOI: 10.1016/S0022-0248(02)00858-8

18. Farrah H. E., Lawrance G. A., Wanless E. J. Gypsum-anhydrite transformation in hot acidic manganese sulfate solution. A comparative kinetic study employing several analytical methods / Hydrometallurgy. 2004. Vol. 75. P. 91 – 98. DOI: 10.1016/j.hydromet.2004.07.002

19. Yu Q., Brouwers H., de Korte A. Gypsum hydration: a theoretical and experimental study. In H. B. Fischer, K. A. Bode (Eds.). / Proceedings of the 17th Ibausil. International conference on building materials (Internationale Baustofftagung). — Weimar (Germany): Bauhaus-Universität Weimar, 2009. P. 1-0783 – 1-0788.

20. De Korte A., Brouwers H. Ultrasonic sound speed analysis of hydrating calcium sulphate hemihydrate / J. Mater. Sci. 2011. Vol. 46. P. 7228 – 7239. DOI: 10.1007/s10853-011-5682-6

21. Petropavlovskaya V., Novichenkova T., Pustovgar A., Buryanov A., Petropavlovskii K. Mechanism of gypsum hardening / XXVII R-S-P Seminar. Theoretical Foundation of Civil Engineering. MATEC Web of Conferences. 2018. Vol. 196. P. 04096(1-8). DOI: 10.1051/matecconf/201819604096

22. Azarsa P., Gupta R. Electrical resistivity of concrete for durability evaluation: review / Advances in Materials Science and Engineering. 2017. Vol. 2017. P. 1 – 30. DOI: 10.1155/2017/ 8453095

23. Skarbek R., Savage H., Kelemen P., Yancopoulos D. Competition between crystallization-induced expansion and creep compaction during gypsum formation, and implications for serpentinization / J. of Geophysical Research: Solid Earth. 2018. Vol. 123. P. 1 – 22. DOI: 10.1029/2017JB015369

24. Gurgul S., Seng G., Williams G. A kinetic and mechanistic study into the transformation of calcium sulfate hemihydrate to dihydrate / J. Synchrotron Rad. 2019. Vol. 26. P. 774 – 784. DOI: 10.1107/S1600577519001929

25. Kralchevsky P. A., Danov K. D., Denkov N. D. Chemical physics of colloid systems and interfaces / Handbook of Surface and Colloid Chemistry. — NY: CRC Press, 2003. — 744 p.

26. Verhulst F. Nonlinear differential equations and dynamical systems. — Springer, 1990. — 277 p.

27. Ridge M. J. Hydration of calcium sulphate hemihydrate / Nature. 1964. Vol. 204. P. 70 – 71. DOI: 10.1038/204070a0

28. Mandelbrot B. B. The fractal geometry of nature. — W. H. Freeman and Company, 1982. — 468 p.


Review

For citations:


Rekhviashvili S.Sh., Narozhnov V.V., Mamchuev M.O., Gaev D.S. Study of the hardening kinetics of a mineral binder using electrical and optical methods. Industrial laboratory. Diagnostics of materials. 2021;87(4):32-37. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-4-32-37

Views: 515


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)