

Computational and fractographic study of the stable growth of low cycle fatigue cracks in the disk of an aircraft engine turbine under complex loading cycles
https://doi.org/10.26896/1028-6861-2021-87-4-52-60
Abstract
The results of a comprehensive computational and experimental study of the kinetics of low-cycle fatigue cracks (LCF) in a turbine disk made of EP741NP granular nickel alloy of an aircraft gas turbine engine under complex loading cycles (CLC) are presented. The configuration of crack fronts was reconstructed using light microscopy. Steps of the blocks of fatigue striations characterizing the crack increment under CLC at the stage of steady crack growth are measured using scanning electron microscopy during microfractographic analysis. The period of LCF crack steady growth is estimated and the reproducibility of the regularities of steady growth is demonstrated which testifies the capability of reliable prediction for LCF crack steady growth. The finite element modeling of the reconstructed crack fronts has been carried out. The values?? of the range of stress intensity factor at each crack front in the area of measuring the pitch of the striation blocks were calculated for the subcycles of complex loading cycles. Using the previously developed physically grounded mathematical model and calculation methodology, forecasting of stable growth of the LCF crack was carried out. The results of forecasting match the data of micro-fractographic analysis unlike the results of LCF crack growth prediction based on Paris law which differ significantly from experimental data.
About the Authors
N. V. TumanovRussian Federation
Nikolay V. Tumanov
2, Aviamotornaya ul., Moscow, 111116
N. A. Vorobjeva
Russian Federation
Nina A. Vorobjeva
2, Aviamotornaya ul., Moscow, 111116
A. I. Kalashnikova
Russian Federation
Aleksandra I. Kalashnikova
2, Aviamotornaya ul., Moscow, 111116
E. P. Kuz’min
Russian Federation
Evgeny P. Kuz’min
2, Aviamotornaya ul., Moscow, 111116
M. A. Lavrentyeva
Russian Federation
Marina A. Lavrentyeva
2, Aviamotornaya ul., Moscow, 111116
A. N. Servetnik
Russian Federation
Anton N. Servetnik
2, Aviamotornaya ul., Moscow, 111116
References
1. Dem’ianushko I. V., Birger I. A. Strength analysis of rotating disks. — Moscow: Mashinostroenie, 1978. — 247 p. [in Russian].
2. Inozemtsev A. A., Nikhamkin M. A., Sandratskii V. L. Construction bases of aero engines and power installations. Vol. 4. Dynamics and strength of aero engines and power installations. — Moscow: Mashinostroenie, 2008. — 191 p. [in Russian].
3. Nozhnitskii Yu. A., Tumanov N. V., Cherkasova S. A., Lavrent’eva M. A. Fractographic methods of residual life estimation for aero engine disks / Vestn. Uf. Gos. Aviats. Tekhn. Univ. 2011. Vol. 16. N 4(44). P. 39 – 45 [in Russian].
4. Tumanov N. V., Cherkasova S. A., Lavrent’yeva M. A., Vorob’eva N. A. Study of low cycle fatigue crack growth mechanisms in aero engine disks and estimation of disks residual life / Vestn. Samar. Gos. Aérokosm. Univ. 2011. N 3(27). Part 2. P. 175 – 184 [in Russian].
5. Tumanov N. V., Lavrent’eva M. A., Cherkasova S. A. Reconstitution and prediction of fatigue of fatigue crack growth in aero engine disks / Konv. Mashinostr. 2005. N 4 – 5. P. 98 – 106 [in Russian].
6. Tumanov N. V., Lavrent’eva M. A., Cherkasova S. A., Servetnik A. N. Modeling of steady fatigue crack growth in aero engine disks under simple and complex loading cycles / Vestn. Samar. Gos. Aérokosm. Univ. 2009. N 3(19). Part 1. P. 188 – 199 [in Russian].
7. Tumanov N. V., Lavrent’eva M. A., Cherkasova S. A. Prediction of aero engine disks residual life based on calculation of steady growth period f low cycle fatigue cracks / Vestn. Mosk. Aviats. Inst. 2011. Vol. 18. N 5. P. 33 – 41 [in Russian].
8. Tumanov N. V. Steady fatigue crack growth: micromechanism and mathematical modeling / Zavod. Lab. Diagn. Mater. 2018. Vol. 84. N 11. P. 52 – 69. DOI: 10.26896/1028-6861-2018-84-11-52-69 [in Russian].
9. Tumanov N. V., Lavrent’eva M. A. Prediction of aero engine disks cyclic life based on modeling steady growth of low cycle fatigue cracks / Aviats. Dvig. 2019. N 1(2). P. 37 – 48 [in Russian].
10. Tumanov N. V. Physical and mechanical aspects of steady fatigue crack growth / Vestn. Mosk. Aviats. Inst. 2011. Vol. 18. N 2. P. 132 – 136 [in Russian].
11. Paris P., Erdogan F. A critical analysis of crack propagation laws / Journal of Basic Engineering (Trans. ASME). 1963. N 12. P. 528 – 534.
12. Siratori M., Miyosi T., Matsusita H. Computing fracture mechanics. — Moscow: Mir, 1986. — 334 p. [Russian translation].
13. Rice J. R. Mathematical analysis in the mechanics of fracture. Fracture. Vol. 2. — Moscow: Mir, 1975. P. 204 – 335 [Russian translation].
14. Golubovskii E. R., Volkov M. E., Emmausskii N. M. Method for determination of boundaries of steady fatigue crack growth stage and Paris equation parameters / Zavod. Lab. Diagn. Mater. 2019. Vol. 85. N 9. P. 66 – 74. DOI: 10.26896/ 1028-6861-2019-85-9-66-74 [in Russian].
15. Tumanov N. V. Kinetic equation of steady growth for low cycle fatigue cracks / Vestn. Samar. Gos. Aérokosm. Univ. 2014. N 5(47). Part 1. P. 18 – 26 [in Russian].
Review
For citations:
Tumanov N.V., Vorobjeva N.A., Kalashnikova A.I., Kuz’min E.P., Lavrentyeva M.A., Servetnik A.N. Computational and fractographic study of the stable growth of low cycle fatigue cracks in the disk of an aircraft engine turbine under complex loading cycles. Industrial laboratory. Diagnostics of materials. 2021;87(4):52-60. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-4-52-60