

Arrays of solid contact potentiometric sensors for separate determination of some cephalosporin antibiotics
https://doi.org/10.26896/1028-6861-2021-87-5-5-13
Abstract
Arrays of potentiometric sensors including developed solid-contact unmodified and modified sensors based on tetradecylammonium associates with complex compounds of silver (1) and some β-lactam antibiotics (cefazoline, cefuroxime, cefotaxime (n = 3 – 6)) are proposed; polyaniline and copper oxide being modifiers. The main electroanalytic properties of the sensors are determined (the range of the determined concentrations in antibiotic solutions 1 × 10–4 – 0.1 M, 46.3 < S < 48, Cmin = n × 10–5 М, response time 4 – 10 sec, potential drift 4 – 6 mV/day, service life — 2 months). It is shown that modification of the membrane surfaces brings the steepness of the electrode functions to Nernst-values for single-charged ions of the antibiotics under study; reduces the response time and the detection limits, the linearity intervals of the electrode functions being the same. The potentiometric selectivity coefficients of unmodified and modified sensors based on different electrode active components (EAC) to the studied cephalosporins in the presence of interfering antibiotics are close to unity; cross sensitivity parameters for the considered sensors (the average slope of the electrode function of the sensor Sav, the unselectivity factor F, and the reproducibility factor K) are 46.3 < S (mV/pC) < 48; 0.85 < F < 0.90; 144 < K < 170, respectively. Application of sensors in the multisensory analysis of model mixtures of cephalosporin antibiotics is shown. Method of artificial neural networks (ANN) is used for processing of analytical signals. The correctness of the determination is carried out using «spike tests» on the reference model mixtures (the relative error of the determination does not exceed 12 %).
About the Authors
E. G. KulapinaRussian Federation
Elena G. Kulapina
83, Astrakhanskya ul., Saratov, 410012
A. E. Dubasova
Russian Federation
Anastasia E. Dubasova
83, Astrakhanskya ul., Saratov, 410012
O. I. Kulapina
Russian Federation
Olga I. Kulapina
112, Bol’shaya Kazach’ya ul., Saratov, 410012
V. D. Ankina
Russian Federation
Vlada D. Ankina
112, Bol’shaya Kazach’ya ul., Saratov, 410012
References
1. Budnikov G. K., Evtyugin G. A., Maistrenko V. N. Modified electrodes for voltammetry in chemistry, biology and medicine. — Moscow: Binom, 2009. — 331 p. [in Russian].
2. Legin A. V., Rudnitskaya A. M., Vlasov Yu. G. «Electronic Tongue» — chemical sensor systems for analysis of water media / Problems of analytical chemistry. Vol. 14. Chemical sensors. — Moscow: Nauka, 2011. P. 79 – 126 [in Russian].
3. Kulapina E. G., Makarova N. M. Multi-sensor systems in analysis of liquid and gas objects. — Saratov: Nauka, 2010. — 165 p. [in Russian].
4. Wang W., Liu Y. Electronic tongue for food sensory evaluation / In the book: Evaluation Technologies for Food Quality. — Elsevier, 2019. P. 23 – 36. DOI: 10.1016/B978-0-12-814217-2.00003-2
5. Ghasemi-Varnamkhasti M., Apetrei C., Lozano J., Anyogu A. Potential use of electronic noses, electronic tongues and biosensors as multisensor systems for spoilage examination in foods / Trends Food Sci. Technol. 2018. Vol. 80. P. 71 – 92. DOI: 10.1016/j.tifs.2018.07.018
6. Oroian M., Ropciuc S. Romanian honey authentication using voltammetric electronic tongue. Correlation of voltammetric data with physico-chemical parameters and phenolic compounds / Comput. Electron. Agric. 2019. Vol. 157. P. 371 – 379. DOI: 10.1016/j.compag.2019.01.008
7. Elamine Y., Inacio P. M. C., Lyoussi B., et al. Insight into the sensing mechanism of an impedance based electronic tongue for honey botanic origin discrimination / Sens. Actuators, B. 2019. Vol. 285. P. 24 – 33. DOI: 10.1016/j.snb.2019.01.023
8. Sobrino-Gregorio L., Bataller R., Soto J., Escriche I. Monitoring honey adulteration with sugar syrups using an automatic pulse voltammetric electronic tongue / Food Control. 2018. Vol. 91. P. 254 – 260. DOI: 10.1016/j.foodcont.2018.04.003
9. Rodrigues N., Marx I. M. G., Casal S., et al. Application of an electronic tongue as a single-run tool for olive oils’ physicochemical and sensory simultaneous assessment / Talanta. 2019. Vol. 197. P. 363 – 373. DOI: 10.1016/j.talanta.2019.01.055
10. Harzalli U., Rodrigues N., Veloso A. C. A., et al. A taste sensor device for unmasking admixing of rancid or winey-vinegary olive oil to extra virgin olive oil / Comput. Electron. Agric. 2018. Vol. 144. P. 222 – 231. DOI: 10.1016/j.compag.1017.12.016
11. Dias L. G., Fernandes A., Veloso A. C. A., et al. Single-cultivar extra virgin olive oil classification using a potentiometric electronic tongue / Food Chem. 2014. Vol. 160. P. 321 – 329. DOI: 10.1016/j.foodchem.2014.03.072
12. Buratti S., Malegori C., Benedetti S., et al. E-nose, e-tongue and e-eye for edible olive oil characterization and shelf life assessment: A powerful data fusion approach / Talanta. 2018. Vol. 182. P. 131 – 141. DOI: 10.1016/j.talanta.2018.01.096
13. Garcia-Hernandez C., Comino C. S., Martin-Pedrosa F., et al. Impedimetric electronic tongue based on nanocomposites for the analysis of red wines. Improving the variable selection method / Sens. Actuators, B. 2018. Vol. 277. P. 365 – 372. DOI: 10.1016/j.snb.2018.09.023
14. Rudnitskaya A., Schmidtke L. M., Reis A., et al. Measurements of the effects of wine maceration with oak chips using an electronic tongue / Food Chem. 2017. Vol. 229. P. 20 – 27. DOI: 10.1016/j.foodchem.2017.02.013
15. Gonzalez-Calabuig A., Valle M. Voltammetric electronic tongue to identify Brett character in wines. On-site quantification of its ethylphenol metabolites / Talanta. 2018. Vol. 179. P. 70 – 74. DOI: 10.1016/j.talanta.2017.10.041
16. Wang J., Zhu L., Zhang W., Wei Zh. Application of the voltammetric electronic tongue based on nanocomposite modified electrodes for identifying rice wines of different geographical origins / Anal. Chim. Acta. 2019. Vol. 1050. P. 60 – 70. DOI: 10.1016/j.aca.2018.11.016
17. Garcia-Hernandez C., Garcia-Cabezon C., Martin-Pedrosa F., Rodriguez-Mendez M. L. Analysis of musts and wines by means of a bio-electronic tongue based on tyrosinase and glucose oxidase using polypyrrole/gold nanoparticles as the electron mediator / Food Chem. 2019. Vol. 289. P. 751 – 756. DOI: 10.1016/j.foodchem.2019.03.107
18. Ceto X., Gonzalez-Calabuig A., Crespo N., et al. Electronic tongues to assess wine sensory descriptors / Talanta. 2017. Vol. 162. P. 218 – 224. DOI: 10.1016/j.talanta.2016.09.055
19. Lipkowitz J. B., Ross C. F., Diako Ch., Smith D. M. Discriminating aging and protein-to-fat ratio in Cheddar cheese using sensory analysis and a potentiometric electronic tongue / J. Dairy Sci. 2018. Vol. 101. N 3. P. 1990 – 2004. DOI: 10.3168/jds.2017-13820
20. Rosa A. R. D., Leone F., Cheli F., Chiofalo V. Fusion of electronic nose, electronic tongue and computer vision for animal source food authentication and quality assessment / J. Food Eng. 2017. Vol. 210. P. 62 – 75. DOI: 10.1016/j.foodeng.2017.04.024
21. Banerjee M. B., Roy R. B., Tudu B., et al. Black tea classification employing feature fusion of E-Nose and E-Tongue responses / J. Food Eng. 2019. Vol. 244. P. 55 – 63. DOI: 10.1016/j.foodeng.2018.09.022
22. Xu M., Wang J., Zhu L. The qualitative and quantitative assessment of tea quality based on E-nose, E-tongue and E-eye combined with chemometrics / Food Chem. 2019. Vol. 289. P. 482 – 489. DOI: 10.1016/j.foodchem.2019.03.080
23. Ouyang Q., Yang Y., Wu J., et al. Rapid sensing of total theaflavins content in black tea using a portable electronic tongue system coupled to efficient variables selection algorithms / J. Food Compos. Anal. 2019. Vol. 75. P. 43 – 48. DOI: 10.1016/j.jfca.2018.09.014
24. Cruz M. G. N., Ferreira N. S., Gomes M. T. S. R., et al. Determination of paralytic shellfish toxins using potentiometric electronic tongue / Sens. Actuators B. 2018. Vol. 263. P. 550 – 556. DOI: 10.1016/j.snb.2018.02.158
25. Kulapina E. G., Kulapina O. I., Ankina V. D. Potentiometric sensors for the determination of β-lactam antibiotics in medicinal and biological media. — Saratov: Saratovsky Istochnik, 2019. — 106 p. [in Russian].
26. Vlasov Yu. G., Legin A. V., Rudnitskaya A. M. Cation sensitivity of AgI – Sb2S3 glasses and their use in the multisensor analysis of liquid media / J. Anal. Chem. 1997. Vol. 52. N 8. P. 758 – 763.
27. Legin A., Vlasov Yu., Rudnitskaya A., Bychkov E. Cross-sensitivity of chalcogenide glass sensors in solutions of heavy metal ions / Sens. Actuators B. 1996. Vol. 34. N 1 – 3. P. 456 – 461. DOI: 10.1016/S0925-4005(96)01852-7
28. Kulapina E. G., Tyutlikova M. S., Kulapina O. I, Dubasova A. E. Solid contact potentiometric sensors for the determination of some cephalosporin antibiotics in pharmaceuticals and oral fluid / J. Anal. Chem. 2019. Vol. 74. Suppl. N 1. P. 52 – 58. DOI: 10.1134/S1061934819070128
Review
For citations:
Kulapina E.G., Dubasova A.E., Kulapina O.I., Ankina V.D. Arrays of solid contact potentiometric sensors for separate determination of some cephalosporin antibiotics. Industrial laboratory. Diagnostics of materials. 2021;87(5):5-13. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-5-5-13