Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Optimization of the parameters of a laser induced breakdown spectrometer (LIBS) using probabilistic-deterministic design of experiment

https://doi.org/10.26896/1028-6861-2021-87-5-14-19

Abstract

A method for optimizing the settings of a LIBS device aimed at achieving the maximum intensity of analytical lines of the analyte of constant composition is considered using probabilistic-deterministic design of experiments (PDDE). A mixture of Cr, Mn, Fe, Co, and Ni oxides homogenized and diluted by fusion with a lead-phosphate mixture is used as an analyte. It is shown that data of mathematical processing of 25 spectra by the PDDE method can be used to develop mathematical models which relate the line intensity with the energy of the laser pumping lamp, the lag time of the first and second Q-switches, the time delay of the exposure onset, and the total exposure time. The use of the geometric mean and mathematical model in the form of the product of the partial dependences leads to a good correlation between the calculated and experimental values of the intensity for all the considered spectral lines. The simulation results presented for 16 analytical lines of Cr, Mn, Co, and Ni illustrate the applicability of the method under consideration. The experimentally achieved maximum intensities of analytical lines in the matrix of lead-phosphate glass differ from those calculated using the obtained models by 7 – 12 %. There is a linear correlation between the experimental and calculated values of the intensity at R2 = 0.99 and an inclination angle close to 45°. The spectra recorded during the experiment can be used for optimization of other parameters, e.g., the signal-to-noise ratio. The simplicity of calculations and relatively small number of tests in the optimization experiment make the PDDE a promising method for optimizing the LIBS parameters.

About the Authors

V. N. Fomin
Academician E. A. Buketov Karaganda University
Kazakhstan

Vitaly N. Fomin

28, Universitetskaya ul., Karaganda, 100028



S. K. Aldabergenova
Academician E. A. Buketov Karaganda University
Kazakhstan

Saule K. Aldabergenova

28, Universitetskaya ul., Karaganda, 100028



K. T. Rustembekov
Academician E. A. Buketov Karaganda University
Kazakhstan

Kenzhebek T. Rustembekov

28, Universitetskaya ul., Karaganda, 100028



K. B. Omarov
Academician E. A. Buketov Karaganda University
Kazakhstan

Khylysh B. Omarov

28, Universitetskaya ul., Karaganda, 100028



I. E. Rozhkovoy
Academician E. A. Buketov Karaganda University
Kazakhstan

Ivan E. Rozhkovoy

28, Universitetskaya ul., Karaganda, 100028



A. V. Dik
Academician E. A. Buketov Karaganda University
Kazakhstan

Anton V. Dik

28, Universitetskaya ul., Karaganda, 100028



D. M. Saulebekov
Academician E. A. Buketov Karaganda University
Kazakhstan

Daniyar M. Saulebekov

28, Universitetskaya ul., Karaganda, 100028



References

1. Miziolek A., Paleshi V., Schechter I. Laser-inducted breakdown spectroscopy (LIBS) — New York: Cambridge University Press, 2006. — 640 p.

2. Cremers D. A., Radziemski L. J. Handbook of Laser-Induced Breakdown spectroscopy. — NY: John Wiley & Sons, 2006. — 313 p.

3. Andrade-Garda J. M. Basic Chemometric Techniques in Atomic Spectroscopy — London: RSC Publishing, 2009. — 314 p.

4. Zhang T., Tang H., Li H. Chemometrics in laser-induced breakdown spectroscopy: Progress of Chemometrics in Laser-induced Breakdown Spectroscopy / J. Chemom. 2018. Vol. 32. N 11. e2983. DOI: 10.1002/cem.2983

5. Fisher R. A. The Design of Experiments. — Edinburgh – London: Oliver and Boyd, 1935. — 264 p.

6. Zheng P., Liu H., Wang J., et al. Optimization of experimental conditions by orthogonal test design in a laser-induced breakdown experiment to analyze aluminum alloys / Anal. Methods. 2014. Vol. 7. N 6. P. 2163 – 2169. DOI: 10.1039/c3ay41466c

7. Ferreira E. C., Anzano J. M., Milori D. M. B. P., et al. Multiple Response Optimization of Laser-Induced Breakdown Spectroscopy Parameters for Multi-Element Analysis of Soil Samples / Appl. Spectrosc. 2009. Vol. 63. N 9. P. 1081 – 1088. DOI: 10.1366/000370209789379394

8. Protodyakonov M. M., Teder R. I. The methodology of rational design of the experiment. — Moscow: Nauka, 1970. — 76 p. [in Russian].

9. Malyshev V. P. Probabilistic-deterministic mapping. — Alma-Ata: Nauka, 1981. — 116 p. [in Russian].

10. Belyaev S. V., Malyshev V. P. Ways of development of probabilistic-deterministic design of experiments / Kompl. Pererab. Min. Syr’ya Kazakhstana. Sost. Probl. Resh. 2008. Vol. 9. Ch. 8. P. 599 – 633 [in Russian].

11. Akhmetkarimova Zh. S., Baikenov M. I., Dyusekenov A. M. Mathematical simulation of the hydrogenation of borodino coal / Solid Fuel Chem. 2017. Vol. 51. N 2. P. 111 – 114. DOI: 10.3103/S0361521917020021

12. Ibishev K. S., Malyshev V. P., Kim S. V., et al. Preparation of nanosized nickel powder by direct-current electrolysis combined with high-voltage spark discharge / High Energy Chem. 2017. Vol. 51. N 3. P. 219 – 223 DOI: 10.1134/S0018143917030055

13. Fomin V. N., Kovaleva A. A., Aldabergenova S. K. Using multivariate variables in probabilistic-deterministic design of experiments / Bull. Karaganda Univ. Chemistry Series. 2017. Vol. 87. N 3. P. 91 – 100 [in Russian].

14. Fomin V. N., Aldabergenova S. K., Rustembekov K. T., et al. Method for increasing the accuracy of quantitative determination of iron by LIBS / Bulletin of the Karaganda University. Chemistry Series. 2018. Vol. 91. N 3. P. 74 – 83.

15. Laser emission Spectrometers of LAES Matrix Series. http://www.spectrosystems.ru/analytical/laes/laes_matrix.shtml (accessed December 18, 2020).

16. Kramida A., Ralchenko Yu., Reader J., and NIST ASD Team. NIST Atomic Spectra Database (version 5.6.1) — Gaithersburg, MD: National Institute of Standards and Technology, 2018. DOI: 10.18434/T4W30F


Review

For citations:


Fomin V.N., Aldabergenova S.K., Rustembekov K.T., Omarov K.B., Rozhkovoy I.E., Dik A.V., Saulebekov D.M. Optimization of the parameters of a laser induced breakdown spectrometer (LIBS) using probabilistic-deterministic design of experiment. Industrial laboratory. Diagnostics of materials. 2021;87(5):14-19. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-5-14-19

Views: 875


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)