Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Anion exchange extraction of tallium (III) and mercury (II) complex salts and application of the procedure to extraction-photometric determination of the microquantities of mercury (II)

https://doi.org/10.26896/1028-6861-2021-87-5-20-26

Abstract

The goal is to study the anion-exchange extraction of complex thallium (III) and mercury (II) halides (chlorides, bromides, iodides) by a method of a competing intermediate ion using the anions of various dyes — methyl orange, sodium picrate, 2,4-dinitrophenol, methyl red. Mercury (II) and thallium (III) are poisons of high toxicity. The developed method was used to study the anion-exchange extraction of acidocomplexes A solution of methyl orange trinonyloctadecylammonium (TNODA) in toluene was used as an extractant. The method provides determination of mercury (II) with an accuracy of ±2% when the concentration in the initial solution ranges within 2 – 8 × 10–8 mol/liter. It is shown that the values of the exchange constants for the same metal are larger for iodide complexes than for bromide and chloride ones. The extractability of metal halide complexes is mainly determined by their mass. Anions with a large mass have a large surface area, a low charge density, and are weakly hydrated, and thus are better extracted. The results of anion-exchange extraction were used to develop a procedure for the extraction-photometric determination of mercury (II) in granosan (ethylmercury chloride a prohibited insectofungicide of the 1st hazard class) the illegal use and storage of which could be a source of mercury pollution of groundwater in a number of regions of the Republic of Belarus. The relative error of determination does not exceed ±2%.

About the Author

Yu. V. Matveichuk
LLC «NORDCHIM»
Belarus

Yulia V. Matveichuk

23A/309 Uruchskaya ul., Minsk, 220125



References

1. Koroleva M. V., Kalugin A. A., Tumanov A. A., Zorin A. D. Determination of mercury (II) by biological and photometric methods / Analit. Kontrol’. 2003. Vol. 7. N 3. P. 262 – 266 [in Russian].

2. Kim N. O., Ivanovskaya E. A. Determination of microimpurities of mercury in the drug protamine sulfate by stripping voltammetry / Razrab. Reg. Lekarstv. Sredstv. 2019. Vol. 8. N 2. P. 103 – 107 [in Russian].

3. Matveyko N. P., Protasov S. K., Sadovsky V. V. Determination of heavy metals in human hair / Vestn. Vitebsk. Univ. 2013. N 25. P. 95 – 98 [in Russian].

4. Oskolok K. V., Monogarova O. V., Devyatkina E. D. Direct X-ray fluorescence determination of mercury on polyurethane foam sorbent / Vestn. Mosk. Univ. Ser. 2. Khimiya. 2012. Vol. 53. N 2. P. 115 – 118 [in Russian].

5. Ulyanova T. S., Stenno E. V., Veikhman G. A., Nedoshitova A. V. Methodological and practical aspects of determining total mercury in whole blood, urine and hair samples by inductively coupled plasma mass spectrometry / Analiz Riska Zdor. 2018. N 2. P. 119 – 128 [in Russian]. DOI: 10.21668/health.risk/2018.2.14

6. Moiseeva E. V., Potapova I. A. Atomic absorption determination of mercury in urine by the cold vapor method using a mercury-hydride attachment / Med. Truda Promyshl. Ékol. 2019. Vol. 1. N 10. P. 887 – 891 [in Russian]. DOI: 10.31089/1026-9428-2019-59-10-887-891

7. Ghorbani-Kalhor E., Hosseinzadeh-Khanmiri R., Abolhasani J., et al. Determination of mercury (II) ions in seafood samples after extraction and preconcentration by a novel functionalized magnetic metal-organic framework nanocomposite / J. Sep. Sci. 2015. Vol. 38. N 7. P. 1179 – 1186. DOI: 10.1002/jssc.201401320

8. Mukhamadiyarova R. V., Smirnova A. S. Study of the mercury content solid in natural samples / Vestn. Mosk. Univ. Ser. 4. Geol. 2014. N 1. P. 36 – 40 [in Russian].

9. Tataeva S. Dzh., Ramazanov A. Sh., Magomedov K. E., Zeynalov R. Z. Potentiometric flow-injection determination of mercury ions using an electrode based on diantipyrylpropylmethane / Zavod. Lab. Diagn. Mater. 2018. Vol. 84. N 9. P. 28 – 33 [in Russian]. DOI: 10.26896/1028-6861-2018-84-9-28-33

10. Yun Hui, Yujia Liu, Tang W. C., et al. Determination of mercury (II) on a centrifugal microfluidic device using ionic liquid dispersive liquid-liquid microextraction / Micromachines. 2019. Vol. 10. N 8. P. 523 – 527. DOI: 10.3390/mi10080523

11. Dongtao Lu, Zhen Chen, Ying Li, et al. Determination of mercury (II) by fluorescence using deoxyribonucleic acid stabilized silver nanoclusters / J. Anal. Lett. 2015. Vol. 48. N 2. P. 281 – 290. DOI: 10.1080/00032719.2014.940527

12. Nedosekin D. A., Saranchina N. V., Mokhova O. V., et al. Sensitive solid-state optical sensible materials for photothermal determination of trace metals / Eur. J. Phys. 2007. Vol. 151. N 1. P. 71 – 73. DOI: 10.1140/epjst/e2008-00385-8

13. Turabov N. T., Todzhiev Zh. N. Spectrophotometric determination of mercury (II) ions / Universum Khimiya Biol. (élektr. nauch. zh.) 2019. Vol. 65. N 11. http://7universum.com/ru/nature/archive/item/8124 [in Russian].

14. Pradeep Raju B., Devanna N., Pradeep Raju B. Direct and derivative spectrophotometric determination of mercury (II) using alpha amyl cinnamaldehyde isonicotinoyl hydrazone (ACINH) / Int. J. Res. Pharm. Sci. 2016. Vol. 7. N 1. P. 82 – 86.

15. Nityananda Kumar Reddy P., Trivikram Reddy G., Kumar Ms. Sangita, et al. Spectrophotometric determination of mercury (II) in environmental samples and synthetic mixtures using N’-(1-(pyridin-2-yl)ethylidene) isonicotinohydrazide as sensitive analytical reagent / Der Pharmacia Lettre. 2015. Vol. 7. N 1. P. 292 – 302.

16. Parawee R., Kanyarak P., Saisunee L. Development of sequential injection spectrophotometric method for determination of mercury (II) using pyrogallol red / Int. J. Environ. Anal. Chem. 2016. Vol. 96. N 15. P. 1415 – 1429. DOI: 10.1080/03067319.2016.1265955

17. Volgina T. N., Novikov V. T., Kurchenko P. V. Investigation of a new method of oxidative detoxification of the pesticide granosan / Polzunov. Vestn. 2009. N 3. P. 168 – 171 [in Russian].

18. Litvishko V. S. Development of formulations of granosan microcapsules / Akt. Probl. Gum. Estestv. Nauk. 2016. N 1-2. P. 63 – 65 [in Russian].

19. Pat. BY 18315 C1. Kopytkov V. V. Liquid composition for obtaining a fire retardant coating; Gomel Engineering Institute. Publ. June 30, 2014 [in Russian].

20. Fedorova O. Yu. Neutralization of substandard pesticides in mild conditions / Proc. of the Academician M. A. Usov XIX Int. Symp. of students and young scientists «Problems of Geology and Development of Subsoil». Vol. I. — Tomsk, 2015. P. 656 – 658 [in Russian].

21. Artsruni V. Zh., Tarayan V. M. Extraction-photometric determination of microgram amounts of thallium with acridine yellow / Armyan. Khim. Zh. 1974. Vol. 27. N 2. P. 106 – 110 [in Russian].

22. Ivanenko A. A., Rutkovskiy G. V., Aleksandrova M. L., et al. Direct determination of background and toxic contents of thallium in human blood by the AAS method with ETA / Mikroélem. Med. 2008. Vol. 9. N 1 – 2. P. 35 – 38 [in Russian].

23. Molavi N., Ghaderi A., Banafshe H. R. Determination of thallium in urine, blood, and hair in illicit opioid users in Iran / Hum. Exp. Toxicol. 2020. Vol. 39. N 6. P. 808 – 815. DOI: 10.1177/0960327120903487

24. Arı B., Bakırdere S., Ataman O. Y. Development of sensitive analytical methods for the determination of thallium at trace levels by slotted quartz tube flame atomic absorption spectrometry / Spectrochim. Acta, Part B. 2020. Vol. 171. N 6. DOI: 10.1016/j.sab.2020.105937

25. Kisel E. P., Filippovich L. I., Varchenko V. V., Belikov K. N. Voltammetric determination of thallium in NaI:Tl, CsI:Tl single crystals with an increased dopant content / Metod. Ob’ekt. Khim. Anal. 2014. Vol. 9. N 3. P. 125 – 129 [in Russian].

26. Amin A. S., El-Sharjawy Abdel-Azeem M., Kassem M. A. Determination of thallium at ultra-trace levels in water and biological samples using solid phase spectrophotometry / Spectrochim. Acta. Part A. 2013. Vol. 110. P. 262 – 268. DOI: 10.1016/j.saa.2013.01.096

27. Sailaja B. B. V., Tesfahun K., Prasada Rao M. S. Complexometric determination of indium (III) and thallium (III) individually and in mixtures using methylene blue as ion-pair indicator / The IUP Journal of Chemistry. 2012. Vol. 5. N 1. P. 54 – 62.

28. Matveichuk Yu. V., Rakhmanko E. M., Okaev E. B. Ion-selective electrodes based on higher quaternary ammonium salts, reversible to doubly charged inorganic anions. — Minsk: BSU, 2018. — 239 p. [in Russian].

29. Matveichuk Yu. V., Rakhman’ko E. M. Higher quaternary ammonium salts with a sterically hindered exchange center: application to the development of ion selective electrodes reversible to metal thiocyanate complexes / J. Anal. Chem. 2018. Vol. 73. N 12. P. 1154 – 1164. DOI: 10.1134/S1061934818100052

30. Ivanov V. M., Tsepkov M. G., Figurovskaya V. N. Optical, colorimetric and acid-base characteristics of methyl orange / Vestn. Mosk. Univ. Ser. 2. Khimiya. 2010. Vol. 51. N 6. P. 445 – 449 [in Russian].


Review

For citations:


Matveichuk Yu.V. Anion exchange extraction of tallium (III) and mercury (II) complex salts and application of the procedure to extraction-photometric determination of the microquantities of mercury (II). Industrial laboratory. Diagnostics of materials. 2021;87(5):20-26. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-5-20-26

Views: 458


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)