Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Laser-ultrasonic study of the local porosity of reactive cast aluminum-matrix composites

https://doi.org/10.26896/1028-6861-2021-87-5-34-42

Abstract

One of the most critical manufacturing defects of cast metal-matrix composites is a non-uniform porosity distribution over the composite volume. Unevenness of the distribution leads not only to local softening, but also plays a key role in the evolution of the damage process under the external loads. The goal of the study is to apply a new laser-ultrasonic method to in-situ study of a local porosity in reactive cast aluminum-matrix composites. The proposed method is based on statistical analysis of the amplitude distribution of backscattered broadband pulses of longitudinal ultrasonic waves in the studied materials. Laser excitation and piezoelectric detection of ultrasound were carried out using a laser-ultrasonic transducer. Two series of reactive cast aluminum-matrix composites were analyzed: reinforced by in situ synthesized Al3Ti intermetallic particles in different volume concentrations and by Al3Ti added with synthetic diamond nanoparticles. It is shown that for both series of the composites, the amplitude distribution of backscattered ultrasonic pulses is approximated by the Gaussian probability distribution applicable for statistics of large number of independent random variables. The empirical dependence of the half-width of this distribution on the local porosity in composites of two series is approximated by the same nearly linear function regardless of the size and fraction of reinforcing particles. This function was used to derive the formula for calculation of the local porosity in the studied composites. The developed technique seems to be promising in revealing potentially dangerous domains with high porosity in reactive-cast metal-matrix composites.

About the Authors

N. B. Podymova
M. V. Lomonosov Moscow State University
Russian Federation

Natalia B. Podymova

Faculty of Physics

1, Leninskie gory, Moscow, 119991



I. E. Kalashnikov
A. A. Baikov Institute of Metallurgy and Materials Science, RAS
Russian Federation

Igor E. Kalashnikov

49, Leninsky prosp., Moscow, 119334



L. I. Kobeleva
A. A. Baikov Institute of Metallurgy and Materials Science, RAS
Russian Federation

Lyubov I. Kobeleva

49, Leninsky prosp., Moscow, 119334



References

1. Clyne T. W., Withers P. J. An introduction to metal matrix composites. — Cambridge: Cambridge University Press, 1995. — 528 p.

2. Mileiko S. T. Metal and ceramic based composites. — Amsterdam: Elsevier, 1997. — 691 p.

3. Chernyshova T. A., Kurganova Yu. A., Kobeleva L. I., Bolotova L. K. Cast particulate-reinforced aluminum-matrix composites: manufacturing, properties, application. — Ulyanovsk: UlGTU, 2012. — 295 p. [in Russian].

4. Ibrahim I. A., Mohamed F. A., Lavernia E. J. Particulate reinforced metal matrix composites — a review / J. Mater. Sci. 1991. Vol. 26. P. 1137 – 1156. DOI: 10.1007/BF00544448

5. Lloyd D. J. Particle reinforced aluminium and magnesium matrix composites / Int. Mater. Rev. 1994. Vol. 39. P. 1 – 23. DOI: 10.1179/imr.1994.39.1.1

6. Kainer K. U. Basics of metal matrix composites. In: Metal matrix composites: custom-made materials for automotive and aerospace engineering / Kainer K. U. — Weinheim: Wiley-VCH Verlag GmbH & Co., 2006. P. 1 – 54.

7. Chernyshova T. A., Mikheev R. S., Kalashnikov I. E., Akimov I. V., Kharlamov E. I. Development and approbation of Al – SiC and Al – TiC composites in friction units of oil-production equipment / FizKhOM. 2010. N 5. P. 78 – 86 [in Russian].

8. Miranda G., Buciumeanu M., Madeira S., Carvalho O., Soares D., Silva F. Hybrid composites — metallic and ceramic reinforcements influence on mechanical and wear behavior / Compos. Part B Eng. 2015. Vol. 74. P. 153 – 165. DOI: 10.1016/j.compositesb.2015.01.007

9. Bolotova L. K., Kalashnikov I. E., Kobeleva L. I., Bykov P. A., Katin I. V., Kolmakov A. G., Podymova N. B. Structure and properties of composite materials based on babbit B83 alloy obtained by extrusion / FizKhOM. 2017. N 2. P. 63 – 70 [in Russian].

10. Kolmakov A. G., Kalashnikov I. E., Bolotova L. K., Podymova N. B., Bykov P. A., Katin I. V., Kobeleva L. I. Study of characteristics of B83 antifriction alloy-based composite materials / Inorg. Mater. 2020. Vol. 56. N 15 (in print).

11. Tjong S. C., Ma Z. Y. Microstructural and mechanical characteristics of in situ metal matrix composites / Mater. Sci. Eng. R. 2000. Vol. 29. P. 49 – 113. DOI: 10.1016/S0927-796X(00)00024-3

12. Varin R. A. Intermetallic-reinforced light-metal matrix in situ composites / Metall. Mater. Trans. A. 2002. Vol. 33. P. 193 – 201. DOI: 10.1007/s11661-002-0018-4

13. Wang X., Jha A., Brydson R. In situ fabrication of Al3Ti particle reinforced aluminium alloy metal-matrix composites / Mater. Sci. Eng. A. 2004. Vol. 364. P. 339 – 345. DOI: 10.1016/j.msea.2003.08.049

14. Chernyshova T. A., Bolotova L. K., Kalashnikov I. E., Kobeleva L. I., Bykov P. A. Effect of refractory nanoparticles on the structural modification of metal-matrix composites / Russian Metallurgy (Metally). 2007. N. 3. P. 236 – 241. DOI: 10.1134/S0036029507030123

15. Murasheva V. V., Burkovskaya N. P., Sevostyanov N. V. Manufacturing techniques of high-temperature Nb-Si in situ composites (a review) / Konstr. Komposits. Mater. 2015. N 2. P. 27 – 38 [in Russian].

16. Gangil N., Siddiquee A. N., Maheshwari S. Aluminium based in situ composite fabrication through friction stir processing: A review / J. Alloys. Compd. 2017. Vol. 715. P. 91 – 104. DOI: 10.1016/j.jallcom.2017.04.309

17. Campbell J. Porosity. In: Complete casting handbook. Metal casting processes, metallurgy, techniques and design. — Amsterdam: Butterworth-Heinemann, Elsevier, 2015. P. 341 – 415.

18. Rohatgi P., Alaraj S., Thakkar R., Daoud A. Variation in fatigue properties of cast A359-SiC composites under total strain controlled conditions: Effects of porosity and inclusions / Compos. Part A. 2007. Vol. 38. N 8. P. 1829 – 1841. DOI: 10.1016/j.compositesa.2007.04.005

19. Pineau A., Benzerga A., Pardoen T. Failure of metals I: Brittle and ductile fracture / Acta Mater. 2016. Vol. 107. P. 424 – 483. DOI: 10.1016/j.actamat.2015.12.034

20. Vary A. Material property characterization. In: Nondestructive testing handbook. Ultrasonic testing / Moore P. O. — Columbus: ASTM, 2007. P. 365 – 431.

21. Mujica N., Cerda M., Espinoza R., Lisoni J., Lund F. Ultrasound as a probe of dislocation density in aluminum / Acta Mater. 2012. Vol. 60. P. 5828 – 5837. DOI: 10.1016/j.actamat.2012.07.023

22. Lan B., Britton T., Jun T., Gan W., Hofmann M., Dunne F., Lowe M. Direct volumetric measurement of crystallographic texture using acoustic waves / Acta Mater. 2018. Vol. 159. P. 384 – 394. DOI: 10.1016/j.actamat.2012.07.023

23. Mishakin V. V., Klyushnikov V. A. Study of a welded joint of 12Kh18N10T steel using acoustic and magnetic methods / Inorg. Mater. 2018. Vol. 54. N 15. P. 1498 – 1502. DOI: 10.1134/S0020168518150153

24. Mishakin V. V., Serebryany V. N., Gonchar A. V., Klyushnikov V. A. Acoustic measurement of the texture characteristics of 15YuTA construction steel under fatigue failure / Inorg. Mater. 2019. Vol. 55. N 15. P. 1454 – 1457. DOI: 10.1134/S0020168519150111

25. Fitting D., Adler L. Ultrasonic spectral analysis for nondestructive evaluation. — New York: Plenum Press, 1981. — 354 p.

26. Gusev V. E., Karabutov A. A. Laser optoacoustics. — New York: AIP Press, 1993. — 271 p.

27. Sundin S., Artymowicz D. Direct measurements of grain size in low-carbon steels using the laser ultrasonic technique / Metall. Mater. Trans. A. 2002. Vol. 33A. P. 687 – 691. DOI: 10.1007/s11661-002-0131-4

28. Ivochkin A., Karabutov A., Lyamshev M., Pelivanov I., Rohatgi U., Subudhi M. Measurement of velocity distribution for longitudinal acoustic waves in welds by a laser optoacoustic technique / Acoust. Phys. 2007. Vol. 53. N 4. P. 471 – 477. DOI: 10.1134/S1063771007040070

29. Sarkar S., Moreau A., Militzer M., Poole W. Evolution of austenite recrystallization and grain growth using laser ultrasonics / Metall. Mater. Trans. A. 2008. Vol. 39A. P. 897 – 907. DOI: 10.1007/s11661-007-9461-6

30. Kozhushko V., Paltauf G., Krenn H. Detection of nanosecond optoacoustic pulses in steel / Acoust. Phys. 2013. Vol. 59. N 2. P. 250 – 252. DOI: 10.1134/S1063771013020085

31. Podymova N. B., Kalashnikov I. E., Bolotova L. K., Kobeleva L. I. Laser-ultrasonic nondestructive evaluation of porosity in particulate reinforced metal-matrix composites / Ultrasonics. 2019. Vol. 99. P. 105959. DOI: 10.1016/j.ultras.2019.105959

32. Karabutov A. A., Podymova N. B. Nondestructive porosity assessment of CFRP composites with spectral analysis of backscattered laser-induced ultrasonic pulses / J. Nondestruct. Eval. 2013. Vol. 32. P. 315 – 324. DOI: 10.1007/s10921-013-0184-x

33. Adler L., Rose J., Mobley C. Ultrasonic method to determine gas porosity in aluminum alloy castings: Theory and experiment / J. Appl. Phys. 1986. Vol. 59. P. 336-0347. DOI: 10.1063/1.336689


Review

For citations:


Podymova N.B., Kalashnikov I.E., Kobeleva L.I. Laser-ultrasonic study of the local porosity of reactive cast aluminum-matrix composites. Industrial laboratory. Diagnostics of materials. 2021;87(5):34-42. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-5-34-42

Views: 371


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)