

Features of nonlinear in-plane shear deformation of a unidirectional and orthogonally reinforced polymer sheets of composite materials
https://doi.org/10.26896/1028-6861-2021-87-5-47-55
Abstract
A comparative analysis of typical stress-strain diagrams obtained for in-plain shear of the 25 unidirectional and cross-ply reinforced polymer matrix composites under quasi-static loading was carried out. Three of them were tested in the framework of this study, and the experimental data on other materials were taken from the literature. The analysis of the generalized shear-strength curves showed that most of the tested materials exhibit the similar deformation pattern depending on their initial shear modulus: a linear section is observed at the beginning of loading, whereas further increase of the load decreases the slope of the curve reaching the minimum in the failure point. For the three parameters (end point the linear part, maximum reduced deviation of the diagram, tangent shear modulus at the failure point) characterizing the individual features of the presented stress-strain diagrams, approximating their dependences on the value of the reduced initial shear modulus are obtained. At the characteristic points of the deformation diagrams, boundary conditions are determined that can be used to find the parameters of the approximating functions. A condition is proposed for determination of the end point of the linear section on the experimental stress-strain curve, according to which the maximum deviation between the experimental and calculated (according to Hooke’s law) values of the shear stress in this section is no more than 1%, thus ensuring rather high accuracy of approximation on the linear section of the diagram. The results of this study are recommended to use when developing universal and relatively simple in structure approximating functions that take into account the characteristic properties of the experimental curves of deformation of polymer composite materials under in-plane shear of the sheet. The minimum set of experimental data is required to determine the parameters of these functions.
About the Authors
A. O. PolovyiRussian Federation
Aleksandr O. Polovyi
15, Kievskoye sh., Obninsk, 249031
N. V. Matiushevski
Russian Federation
Nikolai V. Matiushevski
15, Kievskoye sh., Obninsk, 249031
N. G. Lisachenko
Russian Federation
Natalia G. Lisachenko
15, Kievskoye sh., Obninsk, 249031
References
1. Hinton M. J., Kaddour A. S., Soden P. D. Failure criteria in fibre reinforced polymer composites: The World-Wide Failure Exercise. — Elsevier Ltd., 2004. — 1268 p. DOI: 10.1016/B978-0-080-44475-8.X5000-8
2. Fanteria D., Panettieri E. A non-linear model for in-plane shear damage and failure of composite laminates / Aerotecnica Missili & Spazio, The Journal of Aerospace Science, Technology and Systems. 2014. Vol. 93. P. 17 – 24. DOI: 10.1007/BF03404672
3. McCarthy C. T., O’Higgins R. M., Frizzell R. M. A cubic spline implementation of non-linear shear behaviour in three-dimensional progressive damage models for composite laminates / Composite Structures. 2010. Vol. 92. P. 173 – 181. DOI: 10.1016/j.compstruct.2009.07.025
4. Dumansky A. M., Tairova L. P., Gorlach I., Alimov M. A. A design-experiment study of nonlinear properties of coal-plastic / Probl. Mashinostr. Nadezhn. Mashin. 2011. N 5. P. 91 – 97 [in Russian].
5. Ruslantsev A. N., Dumansky A. M. Model of nonlinear deformation and damage accumulation in polymer composites / Nauka Obraz. MGTU im. N. É. Baumana. 2014. N 2. P. 324 – 331. DOI: 10.7463/0214.0687567 [in Russian].
6. Mohseni Shakib S. M., Li S. Modified three rail shear fixture (ASTM D 4255/D 4255M) and an experimental study of nonlinear in-plane shear behaviour of FRC / Comp. Sci. Technol. 2009. Vol. 69. P. 1854 – 1866. DOI: 10.1016/j.compscitech.2009.04.003
7. Fedulov B., Fedorenko A., Safonov A., Lomakin E. Nonlinear shear behavior and failure of composite materials under plane stress conditions / Acta Mech. 2017. Vol. 228. N 6. P. 2033 – 2040. DOI: 10.1007/s00707-017-1817-4
8. Totry E., Molina-Aldareguia J. M., Gonzalez C., Llorca J. Effect of fiber, matrix and interface properties on the in-plane shear deformation of carbon-fiber reinforced composites / Composites Science and Technology. 2010. Vol. 70. P. 970 – 980. DOI: 10.1016/j.compscitech.2010.02.014
9. Kaddour A. S., Hinton M. J. Input data for test cases used in benchmark triaxial failure theories of composites / J. Composite Mater. 2012. Vol. 46. P. 2295 – 2312. DOI: 10.1177/0021998312449886
10. Chamis C. C., Sinclair J. H. Ten-deg off-axis test for shear properties in fiber composites / Exp. Mech. 1977. Vol. 17. P. 339 – 346. DOI: 10.1007/BF02326320
11. Liang Y., Wang H., Gu X. In-plane shear response of unidirectional fiber reinforced and fabric reinforced carbon/epoxy composites / Polymer Testing. 2013. Vol. 32. P. 594 – 601.
12. Soutis C., Turkmen D. Moisture and temperature effects on the compressive failure of CFRP unidirectional laminates / J. Composite Mater. 1997. Vol. 31. P. 832 – 849. DOI: 10.1177/002199839703100805
13. Selmy A. I., Elsesi A. R., Azab N. A., Abd El-baky M. A. In-plane shear properties of unidirectional glass fiber (U)/random glass fiber (R)/epoxy hybrid and non-hybrid composites / Composites. Part B. 2012. Vol. 43. P. 431 – 438. DOI: 10.1016/j.compositesb.2011.06.001
14. Choia J.-H., Janga J., Shima W., Chob J.-M., Yoonb S.-J., Choib Ch.-H., Hana H. N., Yu W.-R. Determination of the in-plane shear modulus of unidirectional carbon fiber reinforced plastics using digital image correlation and finite-element analysis / Composite Struct. 2019. Vol. 229. Art. N 111392. DOI: 10.1016/j.compstruct.2019.111392
15. Econometrics: Textbook. 2nd Edition / Utkin V. B. — Moscow: Izd.-torg. korp. «Dashkov & Co», 2012. — 564 p. [in Russian].
Review
For citations:
Polovyi A.O., Matiushevski N.V., Lisachenko N.G. Features of nonlinear in-plane shear deformation of a unidirectional and orthogonally reinforced polymer sheets of composite materials. Industrial laboratory. Diagnostics of materials. 2021;87(5):47-55. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-5-47-55